Các nanoarray hình xương rồng Mn3O4/Co(OH)2 cho siêu tụ điện bất đối xứng có mật độ năng lượng cao

Journal of Materials Science - Tập 55 - Trang 724-737 - 2019
Ya Wang1, Jiangyu Hao1, Wenpo Li1, Xiuli Zuo2, Bin Xiang1, Yujie Qiang3, Xuefeng Zou4, Bochuan Tan1, Qin Hu1, Feng Chen1
1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
2Department of Petroleum, Army Logistics University of PLA, Chongqing, China
3Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
4Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, China

Tóm tắt

Một cấu trúc mới của nanoarray hình xương rồng Mn3O4/Co(OH)2 đã được phát triển trực tiếp trên bọt niken thông qua quy trình hai bước đơn giản, sử dụng phương pháp điện phân và phương pháp thủy nhiệt. Các hạt Mn3O4 được sử dụng làm khung để neo giữ Co(OH)2, nhằm tạo thành cấu trúc nanoarray hình xương rồng. Nhờ vào hiệu ứng cộng hưởng giữa các lớp nano Mn3O4 và Co(OH)2, điện cực Mn3O4/Co(OH)2 thu được thể hiện điện dung riêng xuất sắc là 1792.9 F g−1 ở mật độ dòng 1 A g−1. Hơn nữa, siêu tụ điện bất đối xứng Mn3O4/Co(OH)2//graphene oxide giảm đã được lắp ráp cho thấy mật độ năng lượng cao là 53.4 Wh kg−1 ở mật độ công suất 800.0 W kg−1, cùng với hiệu suất chu kỳ xuất sắc (82.5% duy trì sau 2000 chu kỳ ở 10 A g−1). Những đặc tính xuất sắc này khiến Mn3O4/Co(OH)2 trở thành ứng cử viên sáng giá cho các siêu tụ điện hiệu suất cao.

Từ khóa

#Mn3O4 #Co(OH)2 #nanoarray hình xương rồng #siêu tụ điện bất đối xứng #mật độ năng lượng cao #điện dung riêng.

Tài liệu tham khảo

Liu G, Zhang H, Li J, Liu Y, Wang M (2019) Ultrathin nanosheets-assembled NiCo2S4 nanocages derived from ZIF-67 for high-performance supercapacitors. J Mater Sci 54:9666–9678. https://doi.org/10.1007/s10853-019-03536-2 Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173 Yi J, Qing Y, Wu C, Zeng Y, Wu Y, Lu X, Tong Y (2017) Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sources 351:130–137 Nagaraju G, Raju GS, Ko YH, Yu JS (2016) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8:812–825 Lee G, Varanasi CV, Liu J (2015) Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7:3181–3188 Dai P, Yan T, Hu L, Pang Z, Bao Z, Wu M, Li G, Fang J, Peng Z (2017) Phase engineering of cobalt hydroxides using magnetic fields for enhanced supercapacitor performance. J Mater Chem A 5:19203–19209 Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894 Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442 Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721 Yang J, Wang L, Ma Z, Wei M (2019) In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance. J Colloid Interface Sci 534:665–671 Lee JW, Hall AS, Kim J-D, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164 Nagamuthu S, Vijayakumar S, Muralidharan G (2013) Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuels 27:3508–3515 Deng T, Zhang W, Arcelus O, Kim JG, Carrasco J, Yoo SJ, Zheng W, Wang J, Tian H, Zhang H, Cui X, Rojo T (2017) Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun 8:15194 Liu H, Xue Q, Zhao J, Zhang Q (2018) Enhanced supercapacitive performance of binary cooperative complementary Co(OH)2/Mn3O4 nanomaterials directly synthesized through ion diffusion method controlled by ion exchange membrane. Electrochim Acta 260:330–337 Chen F, Wang H, Ji S, Linkov V, Wang R (2018) Core-shell structured Ni3S2 @Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J 345:48–57 Zou X, Zhou Y, Wang Z, Chen S, Li W, Xiang B, Xu L, Zhu S, Hou J (2018) Free-standing, layered graphene monoliths for long-life supercapacitor. Chem Eng J 350:386–394 Hao J, Li W, Zuo X, Zheng D, Liang X, Qiang Y, Tan B, Xiang B, Zou X (2018) Facile electrochemical phosphatization of Mn3O4 nanosheet arrays for supercapacitor with enhanced performance. J Mater Sci 54:625–637. https://doi.org/10.1007/s10853-018-2842-y Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 29:1–9 Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381 Niederberger M, Colfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287 Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, Wang F (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5:9508–9516 Feng JX, Ding LX, Ye SH, He XJ, Xu H, Tong YX, Li GR (2015) Co(OH)2 @PANI Hybrid Nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv Mater 27:7051–7057 Tian Y, Li D, Liu J, Wang H, Zhang J, Zheng Y, Liu T, Hou S (2017) Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors. Electrochim Acta 257:155–164 Peng L, Lv L, Wan H, Ruan Y, Ji X, Liu J, Miao L, Wang C, Jiang J (2017) Understanding the electrochemical activation behavior of Co(OH)2 nanotubes during the ion-exchange process. Mater Today Energy 4:122–131 Ghosh D, Giri S, Das CK (2013) Preparation of CTAB-assisted hexagonal platelet Co(OH)2/graphene hybrid composite as efficient supercapacitor electrode material. ACS Sustain Chem Eng 1:1135–1142 Lamiel C, Nguyen VH, Kumar DR, Shim J-J (2017) Microwave-assisted binder-free synthesis of 3D Ni–Co–Mn oxide nanoflakes@Ni foam electrode for supercapacitor applications. Chem Eng J 316:1091–1102 Lei Z, Zhang J, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160 Li J, Kong X, Jiang M, Lei X (2018) Uniformly dispersed Pd nanoparticles anchored Co(OH)2/Cu(OH)2 hierarchical nanotube array as high active structured catalyst for Suzuki-Miyaura coupling reactions. J Mater Sci 53:16263–16275. https://doi.org/10.1007/s10853-018-2781-7 Wang H-Y, Li D-G, Zhu H-L, Qi Y-X, Li H, Lun N, Bai Y-J (2017) Mn3O4 /Ni(OH)2 nanocomposite as an applicable electrode material for pseudocapacitors. Electrochim Acta 249:155–165 Li K, Guo D, Kang J, Wei B, Zhang X, Chen Y (2018) Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery. ACS Sustain Chem Eng 6:14641–14651 Wei Z, Yuan J, Tang S, Wu D, Wu L (2019) Porous nanorods of nickel-cobalt double hydroxide prepared by electrochemical co-deposition for high-performance supercapacitors. J Colloid Interface Sci 542:15–22 Peng W, Li H, Song S (2017) Synthesis of fluorinated graphene/CoAl-layered double hydroxide composites as electrode materials for supercapacitors. ACS Appl Mater Interfaces 9:5204–5212 Liu Z, Pan C, Li W, Zhang X, Wang L, Lin B, Chen S (2018) Hierarchical NiCo2−xFexO4/Ni2CoS4 nanoarray-decorated carbon textile anode with enhanced stability and capacitance. J Mater Sci 54:4905–4916. https://doi.org/10.1007/s10853-018-03209-6 Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833 Qi J, Mao J, Zhang A, Jiang L, Sui Y, He Y, Meng Q, Wei F, Zhang X (2018) Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. J Mater Sci 53:16074–16085. https://doi.org/10.1007/s10853-018-2757-7 Li S, Huang W, Yang Y, Ulstrup J, Ci L, Zhang J, Lou J, Si P (2018) Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors. J Mater Chem A 6:20480–20490 Saranya PE, Selladurai S (2018) Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J Mater Sci 53:16022–16046. https://doi.org/10.1007/s10853-018-2742-1 Qin T, Peng S, Hao J, Li H, Wen Y, Wang Z, Huang J, Ma F, Hou J, Cao G (2018) Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric supercapacitor. Electrochim Acta 292:39–46 Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433 Fang J, Li M, Li Q, Zhang W, Shou Q, Liu F, Zhang X, Cheng J (2012) Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim Acta 85:248–255 Huang Z, Li X, Xiang X, Gao T, Zhang Y, Xiao D (2018) Porous NiCoP in situ grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors. J Mater Chem A 6:23746–23756 Duangchuen T, Karaphun A, Wannasen L, Kotutha I, Swatsitang E (2019) Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method. Appl Surf Sci 487:634–646 Peng H, Ma G, Sun K, Zhang Z, Li J, Zhou X, Lei Z (2015) A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes. J Power Sources 297:351–358 Liu TC, Pell WG, Conway BE, Roberson SL (1882) J Electrochem Soc 1998:145 Yang W, Zheng J, Hu S, Zhang W, Wei C, Dong P, Yan Y, Hu H (2017) Self-assembled three-dimensional macroporous Co2(OH)3Cl–MnO2 spheres synthesized by microwave-assisted method: a new hybrid for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 5:4563–4572 Veerasubramani GK, Chandrasekhar A, Sundhakaran MSP, Mok YS, Kim SJ (2017) Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core–shell nanostructures assembled with honeycomb-like porous carbon. J Mater Chem A 5:11100–11113 Lamiel C, Nguyen VH, Roh C, Kang C, Shim J-J (2016) Synthesis of mesoporous RGO@(Co, Mn)3O4 nanocomposite by microwave-assisted method for supercapacitor application. Electrochim Acta 210:240–250 Tang C-L, Wei X, Jiang Y-M, Wu X-Y, Han LN, Wang K-X, Chen J-S (2015) Cobalt-doped MnO2 Hierarchical yolk-shell spheres with improved supercapacitive performance. J Phys Chem C 119:8465–8471 Padmanathan N, Selladurai S (2013) Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics 20:479–487 Chen J, Cui Y, Wang X, Zhi M, Lavorgna M, Baker AP, Wu J (2016) Fabrication of hierarchical porous cobalt manganese spinel graphene hybrid nanoplates for electrochemical supercapacitors. Electrochim Acta 188:704–709