Mn–Zn Ferrite Nanoparticles by Calcining Amorphous Products of Solution Combustion Synthesis: Preparation and Magnetic Behavior
Tóm tắt
Mn–Zn ferrite nanopowders were obtained by calcining diffraction-silent products of solution combustion at 650, 700, and 750°C and characterized by DTA/TGA, XRD, FTIR, SEM/EDX, ASA, and vibrational magnetometry. According to the data of synchronous thermal analysis, the formation of the manganese-zinc ferrite phase took place at 456°C. The results of powder X-ray diffractometry confirmed that, in all three cases, we observed the formation of Mn–Zn ferrite with an average crystallite size (D) ranging between 8.36 and 17.54 nm, the latter growing with increasing annealing temperature T. According to the data of adsorption-structural analysis, the largest specific surface area (S = 71.96 m2/g) was observed at T = 650°C. After annealing at 750°C, S decreased down to 43.28 m2/g. Variation in T was found to affect the magnetic behavior of Mn–Zn ferrite nanoparticles. The appearance of M–H hysteresis loops is indicative of superparamagnetic behavior of synthesized nanoparticles which is supported by low values of coercive force (Hc = 23.7 Oe), remanent magnetization (Mr = 1.47 emu/g), and saturation magnetization (Ms = 13.67 emu/g). Upon an increase in T, the magnetic behavior of synthesized Mn–Zn ferrites got closer to that of soft ferrites. The maximum values of Hc, Ms, and Mr observed at T = 750°C had a value of 53.2 Oe, and 52.55 and 16.23 emu/g, respectively.
Từ khóa
Tài liệu tham khảo
Kulikowski, J., Soft magnetic ferrites: Development or stagnation, J. Magn. Magn. Mater., 1984, vol. 41, nos. 1–3, pp. 56–62. https://doi.org/10.1016/0304-8853(84)90136-7
Martinson, K.D., Kozyritskaya, S.S., Panteleev, I.B., and Popkov, V.I., Low coercivity microwave ceramics based on LiZnMn ferrite synthesized via glycine–nitrate combustion, Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 3, pp. 313–317. https://doi.org/10.17586/2220-8054-2019-10-3-313-317
Ram, B.S., Paul, A.K., and Kulkarni, S.V., Soft magnetic materials and their applications in transformers, J. Magn. Magn. Mater., 2021, vol. 537, p. 168210. https://doi.org/10.1016/j.jmmm.2021.168210
Petrescu, L.-G., Petrescu, M.-C., Ionita, V., Cazacu, E., and Constantinescu, C.-D., Magnetic properties of manganese-zinc soft ferrite ceramic for high frequency applications, Materials, 2019, vol. 12, no. 19, p. 3173. https://doi.org/10.3390/ma12193173
Yan, Y., Geng, L.D., Tan, Y., Ma, J., Zhang, L., Sanghadasa, M., Ngo, K., Ghosh, A.W., Wang, Y.U., and Priya, S., Colossal tunability in high frequency magnetoelectric voltage tunable inductors, Nat. Commun., 2018, vol. 9, p. 4998. https://doi.org/10.1038/s41467-018-07371-y
Harris, V.G., Geiler, A., Chen Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., and Vittoria, C., Recent advances in processing and applications of microwave ferrites, J. Magn. Magn. Mater., 2009, vol. 321, no. 14, pp. 2035–2047. https://doi.org/10.1016/j.jmmm.2009.01.004
Martinson, K.D., Ivanov, A.A., Panteleev, I.B., and Popkov, V.I., Pre-ceramic nanostructured LiZnMn-ferrite powders: Synthesis, structure, and electromagnetic properties, Glass Ceram., 2020, vol. 77, pp. 215–220. https://doi.org/10.1007/s10717-020-00274-9
Thakur, P., Taneja, S., Sindhu, D., Luders, U., Sharma, A., Ravelo, B., and Thakur, A., Manganese zinc ferrites: A short review on synthesis and characterization, J. Supercond. Novel Magn., 2020, vol. 33, pp. 1569–1584. https://doi.org/10.1007/s10948-020-05489-z
Martinson, K.D., Sakhno, D.D., Belyak, V.E., and Kondrashkova, I.S., Ni0.4Zn0.6Fe2O4 nanopowders by solution-combustion synthesis: Influence of Red/Ox ratio on their morphology, structure, and magnetic properties, Int. J. Self-Propag. High-Temp. Synth., 2020, vol. 29, no. 4, pp. 202–207. https://doi.org/10.3103/S106138622004007X
Thakur, P., Chahar, D., Taneja, S., Bhalla, N., and Thakur, A., A review on MnZn ferrites: Synthesis, characterization and applications, Ceram. Int., 2020, vol. 46, no. 10, pp. 15740–15763. https://doi.org/10.1016/j.ceramint.2020.03.287
Praveena, K., Sadhana, K., and Virk, H.S., Structural and magnetic properties of Mn–Zn ferrites synthesized by microwave-hydrothermal process, Solid State Phenom., 2015, vol. 232, pp. 45–64. https://doi.org/10.4028/www.scientific.net/SSP.232.45
Xie, T., Li, H., Liu, C., Yang, J., Xiao, T., and Xu, L., Magnetic photocatalyst BiVO4/Mn–Zn ferrite/reduced graphene oxide: Synthesis strategy and its high photocatalytic activity, Nanomaterials, 2018 vol. 8, no. 6, p. 380.https://doi.org/10.3390/nano8060380
Maksoud, M.I.A.A., El-Sayyad, G.S., Abokhadra, A., Soliman, L.I., El-Bahnasawy, H.H., and Ashour, A.H., Influence of Mg+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, pp. 2598–2616. https://doi.org/10.1007/s10854-019-02799-4
Dyachenko, S.V., Vaseshenkova, M.A., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, A.I., Synthesis and properties of magnetic fluids produced on the basis of magnetite particles, Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 553–559. https://doi.org/10.1134/S1070427216050025
Mylarappa, M., Lakshmi, V.V., Mahesh, K.R.V., Nagaswarupa, H.P., and Raghavendra, N., Recovery of Mn–Zn ferrite from waste batteries and development of rGO/Mn–Zn ferrite nanocomposite for water purification, Mater. Today: Proc., 2019, vol. 9, pp. 256–265. https://doi.org/10.1016/j.matpr.2019.02.157
Maksoud, M.I.A.A., El-Sayyd, G.S., El-Khawaga, A.M., Elkodous, M.A., Abokhadra, A., Elsayed, M.A., Gobara, M., Soliman, L.I., El-Bahnasawy, H.H., and Ashour, A.H., Nanostructured Mg substituted Mn–Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials, J. Hazard. Mater., 2020, vol. 399, p. 123000. https://doi.org/10.1016/j.jhazmat.2020.123000
Hajalilou, A. and Mazlan, S.A., A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties, Appl. Phys. A, 2016, vol. 122, p. 680. https://doi.org/10.1007/s00339-016-0217-2
Nejati, K. and Zabihi, R., Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chem. Cent. J., 2012, vol. 6, p. 23. https://doi.org/10.1186/1752-153X-6-23
Yadav, R.S., Kuritka, I., Vilcakova, J., Jamatia, T., Machovsky, M., Skoda, D., Urbanek, P., Masar, M., Urbanek, M., Kalina, L., and Havlica, J., Impact of sonochemical synthesis condition on the structure and physical properties of MnFe2O4 spinel ferrite nanoparticles, Ultrason. Sonochem., 2020, vol. 61, p. 104839. https://doi.org/10.1016/j.ultsonch.2019.104839
Martinson, K.D., Cherepkova, I.A., Panteleev, I.B., and Popkov, V.I., Single-step solution-combustion synthesis of magnetically soft NiFe2O4 nanopowders with controllable parameters, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 4, pp. 266–270. https://doi.org/10.3103/S1061386219040101
Rosa, J.C. and Segarra, M., Optimization of the synthesis of copper ferrite nanoparticles by a polymer-assisted sol–gel method, ACS Omega, 2019, vol. 4, no. 19, pp. 18289–18298. https://doi.org/10.1021/acsomega.9b02295
Irfan, S., Ajaz-un-Nabi, M., Jamil, Y., and Amin, N., Synthesis of Mn1 – xZnxFe2O4 ferrite powder by co-precipitation method, IOP Conf. Ser.: Mater. Sci. Eng., 2014, vol. 60, p. 012048. https://doi.org/10.1088/1757-899X/60/1/012048
Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279
Novitskaya, E., Kelly, J.P., Bhaduri, S., and Graeve, O.A., A review of solution combustion synthesis: An analysis of parameters controlling powder characteristics, Int. Mater. Rev., 2021, vol. 66, no. 3, pp. 188–214. https://doi.org/10.1080/09506608.2020.1765603
Martinson, K.D., Panteleev, I.B., Shevchik, A.P., and Popkov, V.I., Effect of Red/Ox ratio on the structure and magnetic behavior of Li0.5Fe2.5O4 nanocrystals synthesized by solution combustion approach, Lett. Mater., 2019, vol. 9, no. 4, pp. 475–479. https://doi.org/10.22226/2410-3535-2019-4-475-479
Msomi, J.Z., Nhlapo, T.A., Moyo, T., Snyman, J., and Strydom, A.M., Grain size effects on the magnetic properties of ZnxMn1 – xFe2O4 nanoferrites, J. Magn. Magn. Mater., 2015, vol. 373, pp. 74–77. https://doi.org/10.1016/j.jmmm.2014.01.012
Syue, M.-R., Wei, F.-J., Chou, C.-S., and Fu, C.-M., Magnetic and electrical properties of Mn–Zn ferrites synthesized by combustion method without subsequent heat treatments, J. Appl. Phys., 2011, vol. 109, p. 07A324. https://doi.org/10.1063/1.3560880
Wang, W., Zang, C., and Jiao, Q., Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique, J. Magn. Magn. Mater., 2014, vol. 349, pp. 116–120. https://doi.org/10.1016/j.jmmm.2013.08.057
Bhagwat, V.R., Humbe, A.V., More, S.D., and Jadhav, K.M., Sol–gel auto combustion synthesis and characterization of cobalt ferrite nanoparticles: Different fuels approach, Mater. Sci. Eng., B, 2019, vol. 248, p. 114388. https://doi.org/10.1016/j.mseb.2019.114388
Popkov, V.I., Martinson, K.D., Kondrashkova, I.S., Enikeeva, M.O., Nevedomskiy, V.N., Panchuk, V.V., Semenov, V.G., Volkov, M.P., and Pleshakov, I.V., SCS-assisted production of EuFeO3 core-shell nanoparticles: Formation process, structural features and magnetic behavior, J. Alloys Compd., 2021, vol. 859, p. 157812. https://doi.org/10.1016/j.jallcom.2020.157812
Martinson, K.D., Kondrashkova, I.S., Omarov, S.O., Sladkovskiy, D.A., Kiselev, A.S., Kiseleva, T.Yu., and Popkov, V.I., Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for the process of n‑hexane conversion, Adv. Powder Technol., 2020, vol. 31, no. 1, pp. 402–408. https://doi.org/10.1016/j.apt.2019.10.033