Mn (OH)2 electrodeposited on secondary porous Ni nano-architecture foam as high-performance electrode for supercapacitors

Ionics - Tập 25 - Trang 3287-3298 - 2018
Guo-rong Xu1,2, Chi-peng Xie1, Ya Wen1, An-ping Tang1, Hai-shen Song1
1School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
2Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Xiangtan, China

Tóm tắt

The preparation and capacitance performances of Mn (OH)2@ secondary porous Ni nano-architecture foam (Mn (OH)2@SPNiNF) hybrids are systematically studied. The SPNiNF structure is simply obtained via a NiC2O4·2H2O in situ growing process on Ni foam surface, combined with a thermally treated process under Ar gas. Then, a layer of Mn (OH)2 film was electrodeposited onto the above SPNiNF sheet by applying a galvanostatical technique. It is shown that the SPNiNF sheet is composed of interconnected nanoparticles with a diameter range of 100–200 nm. The fabricated Mn (OH)2@SPNiNF electrode exhibited a high specific capacitance of 532.7 F g−1 and an areal capacitance of 906 m F cm−2 at a current density of 0.5 A g−1. The Mn (OH)2@SPNiNF electrode also exhibited a low ions diffusion resistance and a good cycling performance along with 85.7% specific capacitance retained after 5000 cycles. An asymmetric Mn (OH)2@SPNiNF //AC super capacitor exhibited an energy density of 69.1 Wh kg−1 at a power density of 0.6 kW kg−1. These results demonstrated that the Mn (OH)2@SPNiNF was a promising electrode material for supercapacitors.

Tài liệu tham khảo

Raza W, Ali F, Raza N, Luo YW, Kim K, Yang JH, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013 Kouchachvili L, Yaïci W, Entchev E (2018) Hybrid battery/supercapacitor energy storage system for the electric vehicles. J Power Sources 374:237–248. https://doi.org/10.1016/j.jpowsour.2017.11.040 Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New York Li YF, Yu J, Chen SH, Huang ZZ, Wang L (2018) Fe3O4/functional exfoliation graphene on carbon paper nanocomposites for supercapacitor electrode. Ionics 24:2697–2704. https://doi.org/10.1007/s11581-017-2409-y Chan PY, Majid SR (2018) Synthesis and electrochemical characterization of amorphous manganese-nickel oxide as supercapacitor electrode material. Ionics 24:539–548. https://doi.org/10.1007/s11581-017-2227-2 Hoa NV, Quyen TTH, Nghia NH, Hieu NV, Shim JJ (2017) In situ growth of flower-like V2O5 arrays on graphene@nickel foam as high-performance electrode for supercapacitors. J Alloys Compd 702:693–699. https://doi.org/10.1016/j.jallcom.2017.01.241 Patil UM, Nam MS, Lee SC, Liu S, Kang S, Park BH, Jun SC (2017) Temperature influenced chemical growth of hydrous copper oxide/hydroxide thin film electrodes for high performance supercapacitors. J Alloys Compd 701:1009–1018. https://doi.org/10.1016/j.jallcom.2017.01.025 Boddula R, Bolagam R, Srinivasan P (2018) Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics 24:1467–1474. https://doi.org/10.1007/s11581-017-2300-x Wang HP, Ma GF, Tong YC, Yang ZR (2018) Biomass carbon/polyaniline composite and WO3 nanowire-based asymmetric supercapacitor with superior performance. Ionics 24:3123–3131. https://doi.org/10.1007/s11581-017-2428-8 Yan J, Rasenthiram L, Fang H, Tjandra R, Wang LX, Wang LZ, Zhang Y, Zhang LS, Yu AP (2018) From amorphous to crystalline: in situ growth Ni-Co chalcogenides hybrid nanostructure on carbon cloth for supercapacitor. Ionics. https://doi.org/10.1007/s11581-018-2700-6 Nayak PK, Munichandraiah N (2009) Simultaneous electrodeposition of MnO2 and Mn (OH)2 for supercapacitor studies. Electrochem Solid-State Lett 12(6):A115–A119. https://doi.org/10.1149/1.3110010 Wei B, Wang LD, Miao QH, Yuan YA, Dong P, Vajtai R, Fei WD (2015) Fabrication of manganese oxide/three-dimensional reduced graphene oxide composites as the supercapacitors by a reverse microemulsion method. Carbon 85:249–260. https://doi.org/10.1016/j.carbon.2014.12.063 Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G (2015) Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrode. Electrochim Acta 152:172–177 https://doi.org/10.1016/j.electacta.2014.11.127 Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423 https://doi.org/10.1039/C5TA05523G Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857 https://doi.org/10.1039/C5TA02144H Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43. https://doi.org/10.1016/j.jpowsour.2014.12.005 Zhang YX, Huang M, Li F, Wang XL, Wen ZQ (2015) One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes. J Power Sources 246:449–456 https://doi.org/10.1016/j.jpowsour.2013.07.115 Xu GR, Shi JJ, Dong WH, Wen Y, Min XP, Tang AP (2015) One-pot synthesis of a Ni-Mn3O4 nanocomposite for supercapacitors. J Alloys Compd 630:266–271. https://doi.org/10.1016/j.jallcom.2015.01.067 Yang JH, Yang XF, Zhong YL, Ying JY (2015) Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy 13:702–708. https://doi.org/10.1016/j.nanoen.2015.03.026 Kulkarni S, Puthusseri D, Thakur S, Banpurkar A, Patil S (2017) Hausmannite manganese oxide cathodes for supercapacitors: surface wettability and electrochemical properties. Electrochim Acta 231:460–467. https://doi.org/10.1016/j.electacta.2017.01.165 Yadav AA, Jadhav SN, Chougule DM, Patila PD, Chavan UJ, Kolekar YD (2016) Spray deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim Acta 206:134–142. https://doi.org/10.1016/j.electacta.2016.04.096 Xu JH, Sun YD, Lu MJ, Wang L, Zhang J, Qian JH, Kim EJ (2017) Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high-rate electrodes for supercapacitors. J Alloys Compd 717:108–115. https://doi.org/10.1016/j.jallcom.2017.04.239 Li W, Shao J, Liu Q, Liu X, Zhou X, Hu J (2015) Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim Acta 157:108–114. https://doi.org/10.1016/j.electacta.2015.01.056 Wang T, Zhu YB, Xing Z, Tang GX, Fan HL (2015) The specific capacitive performances of the manganese oxyhydroxide/carbon microcoil electrodes for supercapacitors. Electrochim Acta 151:134–139. https://doi.org/10.1016/j.electacta.2014.11.007 Xu GR, Min XP, Chen QL, Wen Y, Tang AP, Song HS (2017) Sonochemical synthesis of a Mn3O4/MnOOH nanocomposite for electrochemical energy storage. J Alloys Compd 691:1018–1023. https://doi.org/10.1016/j.jallcom.2016.08.309 Cao YB, Xiao YH, Y Y, Gong CF, Wang FL (2014) One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim Acta 127:200–207. https://doi.org/10.1016/j.electacta.2014.02.025 Fang H, Zhang SC, Wu XM, Liu WB, Wen BH, Du ZJ, Jiang T (2013) Facile fabrication of multiwalled carbon nanotube/MnOOH coaxial nanocable films by electrophoretic deposition for supercapacitors. J Power Sources 235:95–104. https://doi.org/10.1016/j.jpowsour.2013.01.195 Anandana S, Raj BGS, Lee GJ, Wu JJ (2013) Sonochemical synthesis of manganese (II) hydroxide for supercapacitor applications. Mater Res Bull 48(9):3357–3361. https://doi.org/10.1016/j.materresbull.2013.05.021 Li M, Cheng PJ, Wang J, Liu F, Zhang XB (2016) The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim Acta 206:108–115. https://doi.org/10.1016/j.electacta.2016.04.084 Liu JS, Hu Y, Chuang TL, Huang CL (2013) Mn (OH)2/multi-walled carbon nanotube composite thin film prepared by spray coating for flexible supercapacitive devices. Thin Solid Films 544:186–190. https://doi.org/10.1016/j.tsf.2013.03.126 Quan W, Tang ZL, Wang ST, Hong Y, Zhang ZT (2016) Facile preparation of free-standing rGO paper-based Ni-Mn LDH/graphene superlattice composites as a pseudocapacitive electrode. Chem Comm 52:3694–3696 Fan Z, Chen JH, Sun F, Yang L, Xu Y, Kuang YF (2007) Preparation of porous manganese hydroxide film and its application in supercapacitors. Indian J Chem 46A:736–741 Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190 Simon P, Gogotsi PY (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854 Zhai T, Wang FX, Yu MH, Xie SL, Liang CL, Li C, Xiao FM, Tang RH, Wu QX, Lu XH, Tong YX (2013) 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 5:6790–6796 Li YJ, Cao DX, Wang Y, Yang SN, Zhang DM, Ye K, Cheng K, Yin JL, Wang GL, Xu Y (2015) Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J Power Sources 279:138–145. https://doi.org/10.1016/j.jpowsour.2014.12.153 Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767. https://doi.org/10.1016/j.jpowsour.2014.07.031 Kong SY, Cheng K, Ouyang T, Gao YY, Ye K, Wang GL, Cao DX (2017) Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim Acta 226:29–39 https://doi.org/10.1016/j.electacta.2016.12.158 Jeyasubramanian K, Raja TSG, Purushothaman S, Kumar MV, Sushmitha I (2017) Supercapacitive performances of MnO2 nanostructures grown on hierarchical Cu nano leaves via electrodeposition. Electrochim Acta 227:401–409 https://doi.org/10.1016/j.electacta.2017.01.044 Ashassi-Sorkhabi H, La’le Badakhshan P (2017) Electrochemical synthesis of three-dimensional porous networks of nickel with different micro-nano structures for the fabrication of Ni/MnOx anocomposites with enhanced supercapacitive performance. Appl Surf Sci 419:165–176 https://doi.org/10.1016/j.apsusc.2017.04.254 Zeng ZG, Zhou HJ, Long X, Guo EJ, Wang XH (2015) Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance. J Alloys Compd 632:376–385. https://doi.org/10.1016/j.jallcom.2015.01.240 Kazemi SH, Kianic MA, Ghaemmaghami M, Kazemi H (2016) Nano-architectured MnO2 electrodeposited on the cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim Acta 197:107–116 https://doi.org/10.1016/j.electacta.2016.03.063 Xu GR, Wen Y, Min XP, Dong WH, Tang AP, Song HS (2015) Construction of MnO2/3-dimensional porous crack Ni for high-performance supercapacitors. Electrochim Acta 186:133–141. https://doi.org/10.1016/j.electacta.2015.10.136 Pan ZH, Qiu YC, Yang J, Ye FM, Xu YJ, Zhang XY, Liu MN, Zhang YG (2016) Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26:610–619 https://doi.org/10.1016/j.nanoen.2016.05.053 Xiao K, Li JW, Chen GF, Liu ZQ, Li N, Su YZ (2014) Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochim Acta 149:341–348. https://doi.org/10.1016/j.electacta.2014.10.117 VMałecka B, VMałecki A, VDrożdż-Cieśla E, Tortet L, Llewellyn P, Rouquerol F (2007) Some aspects of thermal decomposition of NiC2O4·2H2O. Thermochim Acta 466:57–62. https://doi.org/10.1016/j.tca.2007.10.010 Nesbitt HW, Banerjee D (1999) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315 Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815. https://doi.org/10.1002/adma.201205064 Shen BX, Liu T, Zhao N, Yang XY, Deng LD (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperatures elective catalytic reduction of NO with NH3. J Environ Sci 22(9):1447–1454. https://doi.org/10.1016/S1001-0742(09)60274-6 Beyreuther E, GrafstrÖm S, Eng LM (2006) XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys Rev B 73(15):155425 Castro VD, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc 48(1):117–123 Ting Z, Hao J, Jan M (2011) Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J Power Sources 196:860–864. https://doi.org/10.1016/j.jpowsour.2010.06.042 Su DQ, Pan LJ, Fu X, Ma H (2015) Facile synthesis of CNC-MnO2 hybrid as a supercapacitor electrode. Appl Surf Sci 324:349–354 https://doi.org/10.1016/j.apsusc.2014.10.141 Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752 Gao H, Xiao F, Ching CB, Duan H (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810. https://doi.org/10.1021/am300455d Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J (2013) Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 5:1067–1073. https://doi.org/10.1039/C2NR33136E