Mixing properties of phengitic micas and revised garnet‐phengite thermobarometers

Journal of Metamorphic Geology - Tập 20 Số 7 - Trang 683-696 - 2002
R.M. Coggon1, T. J. B. Holland1
1University of Cambridge, Department of Earth Sciences, Downing Street, Cambridge CB2 3EQ, UK ([email protected])

Tóm tắt

AbstractMixing properties for muscovite–celadonite–ferroceladonite solid solutions are derived from combining available experimental phase equilibrium data with tabulated thermodynamic data for mineral end‐members. When a partially ordered solution model is assumed, the enthalpy of mixing among the end‐members muscovite–celadonite–ferroceladonite is nearly ideal, although the Gibbs energies of muscovite–celadonite and muscovite–ferroceladonite solutions are asymmetric due to an asymmetry in the entropy of mixing. Thermodynamic consistency is achieved for data on phengite compositions inassemblages with (a) pyrope+kyanite+quartz/coesite (b) almandine+kyanite+quartz/coesite (c)talc+kyanite+quartz/coesite and (d) garnet–phengite pairs equilibrated both experimentally at high temperatures and natural pairs from low‐grade schists. The muscovite–paragonite solvus has been reanalysed using the asymmetric van Laar model, and the effects of the phengite substitution into muscovite have been quantitatively addressed in order to complete the simple thermodynamic mixing model for the solid solution among the mica end‐members. Results are applied to a natural pyrope–coesite–phengite–talc rock from the Western Alps, and to investigate the conditions under which biotite‐bearing mica schists transform to whiteschist‐like biotite‐absent assemblages for average pelite bulk compositions.

Từ khóa


Tài liệu tham khảo

10.1046/j.0263-4929.2001.00322.x

10.1007/s004100050216

10.1002/gj.3350170303

10.1093/petrology/29.2.445

10.1130/MEM97-p97

10.1029/JB074i008p02089

10.1016/0016-7037(83)90266-1

10.1093/petrology/27.3.677

10.1093/petrology/22.4.628

10.1007/BF00381838

Chopin C., 1983, Magnesiocarpholite and magnesiochloritoid: Two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO‐Al2O3‐SiO2‐H2O, American Journal of Science, 283, 72

10.1007/BF00205262

Comodi P.&Zanazzi P. F. 1994.High pressure structural study of muscovite.IMA 16th General Meeting Pisa abstracts 79–80.

10.1029/94JB02917

Ernst W. G., 1963, Significance of phengitic micas from low‐grade schists, American Mineralogist, 48, 1357

10.1093/petrology/13.1.147

10.1093/petrology/27.3.665

10.1016/0024-4937(82)90017-2

Guggenheim S., 1987, Muscovite dehydroxylation: high‐temperature studies, American Mineralogist, 72, 537

10.1111/j.1525-1314.1994.tb00059.x

10.1007/BF00202099

Hazen R. M., 1978, The crystal structures and compressibilities of layer minerals at high pressure. II. Phlogopite and chlorite, American Mineralogist, 63, 293

10.1007/BF00371156

Hewitt D. A., 1975, Physical properties of some synthetic Fe‐Mg‐Al trioctahedral biotites, American Mineralogist, 60, 854

10.1007/BF00373483

Hodges K. V., 1982, Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire, American Mineralogist, 67, 1118

Holland T. J. B., 1989, The dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model, American Mineralogist, 74, 5

10.1111/j.1525-1314.1990.tb00458.x

10.1111/j.1525-1314.1998.00140.x

10.1127/ejm/7/2/0353

Hynes A., 1988, Empirical garnet‐muscovite geothermometry in low grade metapelites, Selwyn Range (Canadian Rockies), Journal of Metamorphic Geology, 8, 89

Ivaldi G., 1988, Crystal structure at 25 and 700 °C of magnesiochloritoid from a high pressure assemblage (Monte Rosa), American Mineralogist, 73, 358

Levien L., 1981, High pressure crystal structure and compressibility of coesite, American Mineralogist, 66, 324

Massonne H.‐J., 1986, High pressure syntheses and X‐ray properties of white micas in the system K2O‐MgO‐Al2O3‐SiO2‐H2O, Neues Jahrbuch fu¨r Mineralogie Abhandlungen, 153, 177

10.1007/BF00375235

10.1127/ejm/1/3/0391

10.1016/S0024-4937(97)82014-2

Nelson D. O., 1993, Inferred limits to the oxidation of Fe in chlorites: a high‐temperature single‐crystal X‐ray study, American Mineralogist, 78, 1197

10.1180/minmag.1985.049.353.04

10.1127/ejm/11/2/0309

10.1127/ejm/9/6/1183

10.1007/s004100050129

10.1111/j.1525-1314.1983.tb00278.x

Powell R., 1994, Optimal geothermometry and geobarometry, American Mineralogist, 79, 120

10.1111/j.1525-1314.1998.00157.x

Ralph R. L., 1984, Compressibility and crystal structure of andalusite at high pressure, American Mineralogist, 69, 513

Rao B., 1979, Further data on the stability of staurolite+quartz, Neues Jahrbuch fu¨r Mineralogie Monatshefte, 437

Robie R. A., 1967, Selected X‐ray crystallographic data, molar Volumes, and densities of minerals and related substances, United States Geological Survey Bulletin, 1248, 87p

Robie R. A., 1995, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, United States Geological Survey Bulletin, 2131, 461p

Rosenfeld J. L., 1958, Data on coexistent muscovite and paragonite, Bulletin of the Geological Society of America, 69, 1637

10.1093/petrology/37.5.1241

10.1029/JB083iB01p00335

10.1007/BF00307322

10.2138/am-2001-0418

Schreyer W., 1969, High pressure phases in the system MgO‐Al2O3‐SiO2‐H2O, American Journal of Science, 267, 407

10.1130/MEM97-p75

10.1127/0935-1221/2000/0012-0955

10.1107/S0567740875007777

10.1127/0935-1221/2001/0013/0901

10.2475/ajs.263.10.886

10.1046/j.1525-1314.1999.00174.x

10.1002/gj.856

10.1007/BF00371870

Waters D. J., 1993, Geobarometry in phengite‐bearing eclogites, Terra Abstracts, 5, 410

Winter J. K., 1979, Thermal expansion and high‐temperature crystal chemistry of the Al2SiO5 polymorphs, American Mineralogist, 64, 573