Mixed-lineage kinase control of JNK and p38 MAPK pathways

Nature Reviews Molecular Cell Biology - Tập 3 Số 9 - Trang 663-672 - 2002
Kathleen A. Gallo1, Gary L. Johnson2
1Departments of Physiology and of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, Michigan, USA
2Department of Pharmacology, University of Colorado Health Sciences Center, Denver, 80262, Colorado, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kyriakis, J. M. & Avruch, J. pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-l-lysine. J. Biol. Chem. 265, 17355–17363 (1990).

Kyriakis, J. M. & Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869 (2001).

Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

Macian, F., Lopez-Rodriguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 20, 2476–2489 (2001).

Wagner, E. F. AP-1 — introductory remarks. Oncogene 20, 2334–2335 (2001).

Toone, W. M., Morgan, B. A. & Jones, N. Redox control of AP-1-like factors in yeast and beyond. Oncogene 20, 2336–2346 (2001).

Rana, A. et al. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J. Biol. Chem. 271, 19025–19028 (1996).

Hirai, S. et al. MST/MLK2, a member of the mixed lineage kinase family, directly phosphorylates and activates SEK1, an activator of c-Jun N-terminal kinase/stress-activated protein kinase. J. Biol. Chem. 272, 15167–15173 (1997).

Cuenda, A. & Dorow, D. S. Differential activation of stress-activated protein kinase kinases SKK4/MKK7 and SKK1/MKK4 by the mixed-lineage kinase-2 and mitogen-activated protein kinase kinase (MKK) kinase-1. Biochem. J. 333, 11–15 (1998).

Hirai, S. et al. Differential activation of two JNK activators, MKK7 and SEK1, by MKN28-derived nonreceptor serine/threonine kinase/mixed lineage kinase 2. J. Biol. Chem. 273, 7406–7412 (1998).

Merritt, S. E. et al. The mixed lineage kinase DLK utilizes MKK7 and not MKK4 as substrate. J. Biol. Chem. 274, 10195–10202 (1999).

Fanger, G. R. et al. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7, 67–74 (1997).

Tibbles, L. A. et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J. 15, 7026–7035 (1996).

Gotoh, I., Adachi, M. & Nishida, E. Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J. Biol. Chem. 276, 4276–4286 (2001).

Gross, E. A. et al. MRK, a mixed lineage kinase related molecule that plays a role in γ-radiation-induced cell cycle arrest. J. Biol. Chem. 277, 13873–13882 (2002).

Dorow, D. S., Devereux, L., Dietzsch, E. & de Kretser, T. Identification of a new family of human epithelial protein kinases containing two leucine/isoleucine-zipper domains. Eur. J. Biochem. 213, 701–710 (1993).

Gallo, K. A. et al. Identification and characterization of SPRK, a novel Src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. J. Biol. Chem. 269, 15092–15100 (1994).This paper first showed that a mixed lineage kinase (MLK3) is a serine/threonine kinase.

Dorow, D. S. et al. Complete nucleotide sequence, expression, and chromosomal localisation of human mixed-lineage kinase 2. Eur. J. Biochem. 234, 492–500 (1995).

Katoh, M., Hirai, M., Sugimura, T. & Terada, M. Cloning and characterization of MST, a novel (putative) serine/threonine kinase with SH3 domain. Oncogene 10, 1447–1451 (1995).

Ing, Y. L. et al. MLK-3: identification of a widely-expressed protein kinase bearing an SH3 domain and a leucine zipper-basic region domain. Oncogene 9, 1745–1750 (1994).

Ezoe, K., Lee, S. T., Strunk, K. M. & Spritz, R. A. PTK1, a novel protein kinase required for proliferation of human melanocytes. Oncogene 9, 935–938 (1994).

Holzman, L. B., Merritt, S. E. & Fan, G. Identification, molecular cloning, and characterization of dual leucine zipper bearing kinase. A novel serine/threonine protein kinase that defines a second subfamily of mixed lineage kinases. J. Biol. Chem. 269, 30808–30817 (1994).

Reddy, U. R. & Pleasure, D. Cloning of a novel putative protein kinase having a leucine zipper domain from human brain. Biochem. Biophys. Res. Commun. 202, 613–620 (1994).

Hirai, S. et al. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene 12, 641–650 (1996).

Sakuma, H. et al. Molecular cloning and functional expression of a cDNA encoding a new member of mixed lineage protein kinase from human brain. J. Biol. Chem. 272, 28622–28629 (1997).

Stapleton, D., Balan, I., Pawson, T. & Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nature Struct. Biol. 6, 44–49 (1999).

Liu, T. C. et al. Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-α motif. Biochem. Biophys. Res. Commun. 274, 811–816 (2000).

Stronach, B. & Perrimon, N. Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, Slipper. Genes Dev. 16, 377–387 (2002).This paper provides evidence that Slipper is the Drosophila MLK that is downstream of the GTPase dRac and controls the JNK pathway during epithelial migration in the developing fly embryo.

Hodges, R. S., Zhou, N. E., Kay, C. M. & Semchuk, P. D. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Peptide Res. 3, 123–137 (1990).

Hu, J. C., O'Shea, E. K., Kim, P. S. & Sauer, R. T. Sequence requirements for coiled-coils: analysis with λ repressor–GCN4 leucine zipper fusions. Science 250, 1400–1403 (1990).

O'Shea, E. K., Klemm, J. D., Kim, P. S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

Luo, Z. et al. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181–185 (1996).

Farrar, M. A., Alberol, I. & Perlmutter, R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

Nihalani, D., Merritt, S. & Holzman, L. B. Identification of structural and functional domains in mixed lineage kinase dual leucine zipper-bearing kinase required for complex formation and stress-activated protein kinase activation. J. Biol. Chem. 275, 7273–7279 (2000).This paper shows that the leucine zipper of DLK mediates homodimerization but that the DLK zipper does not mediate heterodimerization with other MLKs, including LZK.

Ikeda, A. et al. Identification and characterization of functional domains in a mixed lineage kinase LZK. FEBS Lett. 488, 190–195 (2001).

Nihalani, D., Meyer, D., Pajni, S. & Holzman, L. B. Mixed lineage kinase-dependent JNK activation is governed by interactions of scaffold protein JIP with MAPK module components. EMBO J. 20, 3447–3458 (2001).This paper investigates the mechanism by which JIP1 regulates MLK activation and signalling, demonstrates that JIP1 can prevent oligomerization of DLK and provides evidence for the dynamic nature of the JIP1 complex.

Mata, M. et al. Characterization of dual leucine zipper-bearing kinase, a mixed lineage kinase present in synaptic terminals whose phosphorylation state is regulated by membrane depolarization via calcineurin. J. Biol. Chem. 271, 16888–16896 (1996).

Leung, I. W. & Lassam, N. Dimerization via tandem leucine zippers is essential for the activation of the mitogen-activated protein kinase kinase kinase, MLK-3. J. Biol. Chem. 273, 32408–32415 (1998).This was the first demonstration of homodimerization of an MLK and of the requirement for dimerization in activating JNK.

Vacratsis, P. O. & Gallo, K. A. Zipper-mediated oligomerization of the mixed lineage kinase SPRK/MLK-3 is not required for its activation by the GTPase Cdc 42 but is necessary for its activation of the JNK pathway. Monomeric SPRK L410P does not catalyze the activating phosphorylation of Thr258 of murine mitogen-activated protein kinase kinase 4. J. Biol. Chem. 275, 27893–27900 (2000).This paper indicates that dimerization of MLK3 is required for proper interaction and phosphorylation of a downstream MKK leading to JNK activation.

Zhang, H. & Gallo, K. A. Autoinhibition of mixed lineage kinase 3 through its Src homology 3 domain. J. Biol. Chem. 276, 45598–45603 (2001).This paper shows that MLK3 is autoinhibited through an interaction between the SH3 domain and a sequence located between the zipper and CRIB motifs, and that MLK1–MLK4 are probably autoregulated in an analogous fashion.

Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

Williams, J. C. et al. The 2.35 Å crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J. Mol. Biol. 274, 757–775 (1997).

Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

Bar-Sagi, D. & Hall, A. Ras and Rho GTPases: a family reunion. Cell 103, 227–238 (2000).

Ridley, A. J. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471–477 (2001).

Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

Coso, O. A. et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146 (1995).

Minden, A. et al. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).

Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 (1995).

Teramoto, H. et al. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J. Biol. Chem. 271, 27225–27228 (1996).This paper was the first to show a role for Rac and/or Cdc42 in the activation of MLK3 and in MLK3-mediated activation of the JNK pathway in cells.

Bock, B. C., Vacratsis, P. O., Qamirani, E. & Gallo, K. A. Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation. J. Biol. Chem. 275, 14231–14241 (2000).

Buchsbaum, R. J., Connolly, B. A. & Feig, L. A. Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol. Cell. Biol. 22, 4073–4085 (2002).This work shows that MLK3 can activate the p38 signalling pathway in a Tiam1/JIP2-dependent fashion.

Yasuda, J. et al. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 19, 7245–7254 (1999).This paper describes the association of MLKs with the JIP scaffold proteins for the regulation of the JNK pathway.

Schoorlemmer, J. & Goldfarb, M. Fibroblast growth factor homologous factors are intracellular signaling proteins. Curr. Biol. 11, 793–797 (2001).

Hoffman, G. R. & Cerione, R. A. Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett. 513, 85–91 (2002).

Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

Leung, I. W. & Lassam, N. The kinase activation loop is the key to mixed lineage kinase-3 activation via both autophosphorylation and hematopoietic progenitor kinase 1 phosphorylation. J. Biol. Chem. 276, 1961–1967 (2001).

Vacratsis, P. O., Phinney, B. S., Gage, D. A. & Gallo, K. A. Identification of in vivo phosphorylation sites of MLK3 by mass spectrometry and phosphopeptide mapping. Biochemistry 41, 5613–5624 (2002).

Phelan, D. R., Price, G., Liu, Y. F. & Dorow, D. S. Activated JNK phosphorylates the C-terminal domain of MLK2 that is required for MLK2-induced apoptosis. J. Biol. Chem. 276, 10801–10810 (2001).

Ikeda, A. et al. Mixed lineage kinase LZK forms a functional signaling complex with JIP-1, a scaffold protein of the c-Jun NH2-terminal kinase pathway. J. Biochem. 130, 773–781 (2001).

Fan, G. et al. Dual leucine zipper-bearing kinase (DLK) activates p46SAPK and p38MAPK but not ERK2. J. Biol. Chem. 271, 24788–24793 (1996).

Kelkar, N., Gupta, S., Dickens, M. & Davis, R. J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol. Cell. Biol. 20, 1030–1043 (2000).

Ito, M. et al. JSAP1, a novel Jun N-terminal protein kinase (JNK)-binding protein that functions as a scaffold factor in the JNK signaling pathway. Mol. Cell. Biol. 19, 7539–7548 (1999).

Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the Sunday driver (SYD) protein. Cell 103, 583–594 (2000).

Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell. Biol. 152, 959–970 (2001).

Whitmarsh, A. J. et al. Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15, 2421–2432 (2001).

Knust, E. Drosophila morphogenesis: movements behind the edge. Curr. Biol. 7, R558–R561 (1997).

Noselli, S. JNK signaling and morphogenesis in Drosophila. Trends Genet. 14, 33–38 (1998).

Spencer, F. A., Hoffmann, F. M. & Gelbart, W. M. Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28, 451–461 (1982).

Affolter, M., Marty, T., Vigano, M. A. & Jazwinska, A. Nuclear interpretation of Dpp signaling in Drosophila. EMBO J. 20, 3298–3305 (2001).

Glise, B. & Noselli, S. Coupling of Jun amino-terminal kinase and Decapentaplegic signaling pathways in Drosophila morphogenesis. Genes Dev. 11, 1738–1747 (1997).

Hou, X. S., Goldstein, E. S. & Perrimon, N. Drosophila Jun relays the Jun amino-terminal kinase signal transduction pathway to the Decapentaplegic signal transduction pathway in regulating epithelial cell sheet movement. Genes Dev. 11, 1728–1737 (1997).

Kockel, L. et al. Jun in Drosophila development: redundant and nonredundant functions and regulation by two MAPK signal transduction pathways. Genes Dev. 11, 1748–1758 (1997).

Riesgo-Escovar, J. R. & Hafen, E. Drosophila Jun kinase regulates expression of decapentaplegic via the ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev. 11, 1717–1727 (1997).

Glise, B., Bourbon, H. & Noselli, S. hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451–461 (1995).

Riesgo-Escovar, J. R., Jenni, M., Fritz, A. & Hafen, E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev. 10, 2759–2768 (1996).

Stronach, B. E. & Perrimon, N. Stress signaling in Drosophila. Oncogene 18, 6172–6182 (1999).

Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of Rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

Behrens, A., Jochum, W., Sibilia, M. & Wagner, E. F. Oncogenic transformation by Ras and Fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19, 2657–2663 (2000).

Vogt, P. K. Jun, the oncoprotein. Oncogene 20, 2365–2377 (2001).

Hartkamp, J., Troppmair, J. & Rapp, U. R. The JNK/SAPK activator mixed lineage kinase 3 (MLK3) transforms NIH 3T3 cells in a MEK-dependent fashion. Cancer Res. 59, 2195–2202 (1999).

Lambert, J. M. et al. Role of MLK3-mediated activation of p70 S6 kinase in Rac1 transformation. J. Biol. Chem. 277, 4770–4777 (2002).

Hoffmeyer, A. et al. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor α gene expression in T lymphocytes. J. Biol. Chem. 274, 4319–4327 (1999).

Hoffmeyer, A. et al. The GABP-responsive element of the interleukin-2 enhancer is regulated by JNK/SAPK-activating pathways in T lymphocytes. J. Biol. Chem. 273, 10112–10119 (1998).

Hehner, S. P. et al. Vav synergizes with protein kinase Cθ to mediate IL-4 gene expression in response to CD28 co-stimulation in T cells. J. Immunol. 164, 3829–3836 (2000).

Hehner, S. P. et al. Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell. Biol. 20, 2556–2568 (2000).

Lee, F. S., Hagler, J., Chen, Z. J. & Maniatis, T. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

Lee, F. S., Peters, R. T., Dang, L. C. & Maniatis, T. MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl Acad. Sci. USA 95, 9319–9324 (1998).

Zhao, Q. & Lee, F. S. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-κB through IκB kinase-α and IκB kinase-β. J. Biol. Chem. 274, 8355–8358 (1999).

Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

Putcha, G. V., Deshmukh, M. & Johnson, E. M. Jr., BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, Bcl-2, and caspases. J. Neurosci. 19, 7476–7485 (1999).

Deckwerth, T. L. & Johnson, E. M., Jr. Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J. Cell. Biol. 123, 1207–1222 (1993).

Estus, S. et al. Altered gene expression in neurons during programmed cell death: identification of c-Jun as necessary for neuronal apoptosis. J. Cell. Biol. 127, 1717–1727 (1994).

Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, 927–939 (1995).

Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

Eilers, A. et al. Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J. Neurosci. 18, 1713–1724 (1998).

Liu, Y. F., Dorow, D. & Marshall, J. Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. J. Biol. Chem. 275, 19035–19040 (2000).

Xu, Z. et al. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol. Cell. Biol. 21, 4713–4724 (2001).

Mota, M., Reeder, M., Chernoff, J. & Bazenet, C. E. Evidence for a role of mixed lineage kinases in neuronal apoptosis. J. Neurosci. 21, 4949–4957 (2001).

Harris, C. A. et al. Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J. Neurosci. 22, 103–113 (2002).

Yang, D. D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870 (1997).

Savinainen, A. et al. Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via postsynaptic density protein 95. J. Biol. Chem. 276, 11382–11386 (2001).

Mulle, C. et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392, 601–605 (1998).

Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

Akbarzadeh, S. et al. Mixed lineage kinase 2 interacts with clathrin and influences clathrin-coated vesicle trafficking. J. Biol. Chem. (in the press).

Prowse, C. N. & Lew, J. Mechanism of activation of ERK2 by dual phosphorylation. J. Biol. Chem. 276, 99–103 (2001).

Meyer, D., Liu, A. & Margolis, B. Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J. Biol. Chem. 274, 35113–35118 (1999).

Stockinger, W. et al. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J. Biol. Chem. 275, 25625–25632 (2000).

Gotthardt, M. et al. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275, 25616–25624 (2000).

Matsuda, S. et al. c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. J. Neurosci. 21, 6597–6607 (2001).

Kaneko, M. et al. Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives. J. Med. Chem. 40, 1863–1869 (1997).

Maroney, A. C. et al. Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J. Neurosci. 18, 104–111 (1998).

Saporito, M. S., Brown, E. M., Miller, M. S. & Carswell, S. CEP-1347/KT-7515, an inhibitor of c-Jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther. 288, 421–427 (1999).

Maroney, A. C. et al. CEP-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem. 276, 25302–25308 (2001).This paper describes CEP-1347, which inhibits the mixed-lineage kinases (MLKs). CEP-1437 might be useful in the treatment of neurodegenerative diseases in humans.