Mixed convection flow in a vertical tube filled with porous material with time-periodic boundary condition: steady-periodic regime
Tóm tắt
An analytical study is reported on the hydrodynamic and thermal behaviour of a fully developed mixed convective flow in a vertical tube filled with isotropic porous material having time-periodic boundary condition. The analysis is performed for fully developed parallel flow and steady-periodic regime. The momentum and energy equations presented in dimensionless form along with the constraint equations for the present physical situation are solved exactly. Closed form solution are expressed in terms of modified Bessel function of first kind. The solution obtained is graphically represented and the effect of the Prandtl number
$$Pr$$
, the dimensionless frequency
$$\Omega $$
, and the Darcy number
$$Da$$
on the flow is investigated. It is discovered that velocity is maximum at two different locations in the flow domain, one near the surface of the tube and another at the axis of the tube.
Tài liệu tham khảo
Sparrow, E.M., Gregg, J.L.: Newly quasi-steady free-convection heat transfer in gases. J. Heat Mass Transf. Trans. ASME Ser. 82, 258–260 (1960)
Chung, P.M., Anderson, A.D.: Unsteady laminar free convection. ASME J. Heat Mass Transf. 83, 473–478 (1961)
Nanda, R.J., Sharma, V.P.: Free convection laminar boundary layer in oscillatory flow. J. Fluid Mech. 15, 419–428 (1963)
Bar-Cohen, A., Rohsenow, W.M.: Thermally optimum spacing of vertical natural convection cooled parallel plates. ASME J. Heat Transf. 106, 116–123 (1984)
Wang, C.Y.: Free convection between vertical plates with periodic heat input. ASME J. Heat Transf. 110, 508–511 (1988)
Kazmierczak, M., Chinoda, Z.: Buoyancy-driven flow in an enclosure with time periodic boundary conditions. Int. J. Heat Mass Transf. 35, 1507–1518 (1992)
Kwak, H.S., Kvwahara, J.M., Hyun, J.M.: Resonant enhancement of natural convection heat transfer in a square enclosure. Int. J. Heat Mass Transf. 41, 2837–2846 (1998)
Antohe, B.V., Lage, J.L.: Amplitude effect on convection induced by time periodic boundary conditions. Int. J. Heat Mass Transf. 39, 1121–1133 (1996)
Lage, J.L., Bejan, A.: The resonance of natural convection in an enclosure heated periodically from the side. Int. J. Heat Mass Transf. 36, 2027–2038 (1993)
Barletta, A., Zanchini, E.: Time-periodic laminar mixed convection in an inclined channel. Int. J. Heat Mass Transf. 46, 551–563 (2002)
Barletta, A., Rossi di Schio, E.: Mixed convection flow in a vertical circular duct with time-periodic boundary conditions: steady-periodic regime. Int. J. Heat Mass Transf. 47, 3187–3195 (2004)
Nawaf, S.H.: Natural convection in a square porous cavity with an oscillating wall temperature. Arab. J. Sci. Eng. 31(1b), 35–46 (2006)
Arash, K., Afrand, M., Bazofti, M.M.: Periodic mixed convection of a nanofluid in a cavity with toplid sinusoidal motion. World Acad. Sci. Eng. Technol. 47, 11–29 (2010)
Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media. Pergamon, Oxford (1998)
Neild, D.A., Bejan, A.: Convection in Porous Media, 2nd edn. Springer, New York (1999)
Pop, I., Ingham, D.B.: Convective Heat Transfer, Mathematical and Computational Modelling of Viscous fluids and Porous Media. Pergamon, Oxford (2001)
Vafai, K. (ed.): Handbook of Porous Media. Marcel Dekker, New York (2000)
Kou, H.S., Lu, K.T.: The analytical solution of mixed convection in a vertical channel embedded in a porous media with asymmetric wall heat fluxes. Int. J. Heat Mass Transf. 20, 737–750 (1993)
Jha, B.K.: Free-convection flow through an annular porous medium. Heat Mass Transf. 41, 675–679 (2005)
Aung, W., Worku, G.: Theory of fully developed combined convection including flow reversal. ASME J. Heat Transf. 108, 485–488 (1986)
Barletta, A., Zanchini, E.: On the choice of the reference temperature for fully-developed mixed convection in a vertical channel. Int. J. Heat Mass Transf. 42, 3169–3181 (1999)
Cheng, C.H., Kou, S.H., Huang, W.H.: Flow reversal and heat transfer of fully developed mixed convection in vertical channels. J. Thermophys. Heat Transf. 4, 375–383 (1990)
Lavine, A.S.: Analysis of fully developed opposing mixed convection between inclined parallel plates. Warme-und Stoffubertragung 23, 249–257 (1988)
Rossi di Schio, E., Celli, M., Pop, I.: Buoyant flow in a vertical fluid saturated porous annulus: Brinkman model. Int. J. Heat Mass Transf. 54(7–8), 1665–1670 (2011)