Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đối lưu hỗn hợp trong một ngăn thông gió có lớp xốp hình tam giác
Tóm tắt
Đối lưu hỗn hợp trong một ngăn vuông có lớp xốp hình tam giác và bộ gia nhiệt cục bộ đã được nghiên cứu số. Các phương trình vi phân riêng phần điều khiển cùng với các điều kiện biên tương ứng đã được giải bằng phương pháp sai phân hữu hạn sử dụng hàm dòng không có kích thước, vorticity và biểu thức nhiệt độ. Các ảnh hưởng của số Richardson ($${ Ri} = 0.01 - 10$$), số Darcy ($${ Da} = 10^{-7} -10^{-1}$$), chiều dài bộ gia nhiệt ($${\delta = H/L = 0.2-0.4}$$) và các vị trí khác nhau của lớp xốp trên các dòng chảy và đường đẳng nhiệt cũng như các số Nusselt trung bình và cục bộ tại bộ gia nhiệt đã được phân tích. Kết quả cho thấy tất cả các tham số chính này đều ảnh hưởng đáng kể đến mẫu dòng chảy và truyền nhiệt.
Từ khóa
#đối lưu hỗn hợp #ngăn vuông #lớp xốp #bộ gia nhiệt #phương pháp sai phân hữu hạnTài liệu tham khảo
Angirasa, D.: Mixed convection in a vented enclosure with an isothermal vertical surface. Fluid Dyn. Res. 26, 219–233 (2000)
Anil Lal, S., Reji, C.: Numerical prediction of natural convection in vented cavities using restricted domain approach. Int. J. Heat Mass Transf. 52, 724–734 (2009)
Arpino, F., Cortellessa, G., Mauro, A.: Transient thermal analysis of natural convection in porous and partially porous cavities. Numer. Heat Transf. A 67, 605–631 (2015)
Bagchi, A., Kulacki, F.A.: Experimental study of natural convection in fluid-superposed porous layers heated locally from below. Int. J. Heat Mass Transf. 55, 1149–1153 (2012)
Bahlaoui, A., Raji, A., Hasnaoui, M., Naïmi, M.: Mixed convection heat transfer enhancement in a vented cavity filled with a nanofluid. J. Appl. Fluid Mech. 9, 593–604 (2016)
Beavers, G.S., Joseph, D.D.: boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
Beckermann, C., Ramadhyani, S., Viskanta, R.: Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. ASME J. Heat Transf. 109, 363–370 (1987)
Behzadi, T., Shirvan, K.M., Mirzalhanalari, S., Sheikhrobat, A.A.: Numerical simulation on effect of porous medium on fixed convection heat transfer in a ventilated square cavity. Procedia Eng. 127, 221–228 (2015)
Besbes, S., Mhiri, H., El Golli, S., Le Palec, G., Bournot, P.: Numerical study of a heated cavity insulated by a horizontal laminar jet. Energy Convers. Manag. 42, 1417–1435 (2001)
Bhardwaj, S., Dalal, A., Pati, S.: Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure. Energy 79, 467–481 (2015)
Biserni, C., Rocha, L.A.O., Stanescu, G., Lorenzini, E.: Constructal H-shaped cavities according to Bejan’s theory. Int. J. Heat Mass Transf. 50, 2132–2138 (2007)
Boulard, T., Kittas, C., Roy, J.C., Wang, S.: Convective and ventilation transfers in greenhouses, part 2: determination of the distributed greenhouse climate. Biosyst. Eng. 83(2), 129–147 (2002)
Chamkha, A.J., Ismael, M.A.: Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer. Heat Transf. A 65, 1089–1113 (2014)
Chen, F., Chen, C.F.: Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97–119 (1992)
Chen, K.S., Humphery, J.A.C., Sherman, F.S.: Experimental investigation of thermally driven flow in open cavities of rectangular cross-section. Philos. Trans. R. Soc. Lond. A 316, 57–84 (1985)
Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: ASME International Mechanical Engineering Congress and Exposition, San Francisco (1995)
Desai, C., Vafai, K.: Three-dimensional buoyancy-induced flow and heat transfer around the wheel outboard of an aircraft. Int. J. Heat Fluid Flow 13, 50–64 (1992)
Elsayed, M.M., Chakroun, W.: Effects of aperture geometry on heat transfer in tilted partially open cavities. J. Heat Transf. 121, 819–827 (1999)
Ghalambaz, M., Moattar, F., Karbassi, A., Sheremet, M.A., Pop, I.: Triple-diffusive mixed convection in a porous open cavity. Transp. Porous Media 116, 473–491 (2017)
Gobin, D., Goyeau, B., Neculae, A.: Convective heat and solute transfer in partially porous cavities. Int. J. Heat Mass Transf. 48, 1898–1908 (2005)
Hirata, S.C., Goyeau, B., Gobin, D., Chandesris, M., Jamet, D.: Stability of natural convection in superposed fluid and porous layers: equivalence of the one-and two-domain approaches. Int. J Heat Mass Transf. 52, 533–536 (2009)
Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)
Ismael, M.A., Chamkha, A.J.: Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J. Porous Media 18, 699–716 (2015)
Khanafer, K., Vafai, K.: Buoyancy-driven flows and heat transfer in open-ended enclosures: elimination of the extended boundaries. Int. J. Heat Mass Transf. 43, 4087–4100 (2000)
Khanafer, K., Vafai, K., Lightston, M.: Mixed convection heat transfer in two-dimensional open-ended enclosures. Int. J. Heat Mass Transf. 45, 5171–5190 (2002)
Khanafer, K., Vafai, K.: Effective boundary conditions for buoyancy-driven flows and heat transfer in fully open ended two-dimensional enclosures. Int. J. Heat Mass Transf. 45, 2527–2538 (2002)
Kim, J.H., Ochoa-Tapia, J.A., Whitaker, S.: Diffusion in anisotropic porous media. Transp. Porous Media 2, 327–356 (1987)
Kim, S.G., Choi, C.Y.: Convective heat transfer in porous and overlying fluid layers heated from below. Int. J. Heat Mass Transf. 39, 319–329 (1996)
Kuznetsov, G.V., Sheremet, M.A.: Numerical simulation of convective heat transfer modes in a rectangular area with a heat source and conducting walls. J. Heat Transf. 132, 1–9 (2010)
Lauriat, G., Prasad, V.: Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Transf. 32, 2135–2148 (1989)
Lopez, J.J., Tapia, J.A.: A study of buoyancy driven flow in a confined fluid overlying porous layer. Int. J. Heat Mass Transf. 44, 4725–4736 (2001)
Mahmoudi, A.H., Shahi, M., Talebi, F.: Effect of inlet and outlet location on the mixed convective cooling inside the ventilated cavity subjected to an external nanofluid. Int. Commun. Heat Mass Transf. 37, 1158–1173 (2010)
Mahmud, S., Pop, I.: Mixed convection in a square vented enclosure filled with a porous medium. Int. J. Heat Mass Transf. 49, 2190–2206 (2006)
Mezrhab, A., Amraqui, S., Abid, C.: Modeling of combined surface radiation and natural convection in a vented “T” form cavity. Int. J. Heat Fluid Flow 31, 83–92 (2010)
Mhiri, H., El Golli, S., Berthon, A., Le Palec, G., Bournot, P.: Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet. Int. Commun. Heat Mass Transf. 25, 919–928 (1998)
Nasrin, R., Alim, M.A., Chamkha, A.J.: Numerical simulation of non-Darcy forced convection through a channel with non-uniform heat flux in an open cavity using nanofluid. Numer. Heat Transf. A 64, 820–840 (2013)
Neale, G., Nader, W.: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)
Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn. Springer, New York (2017)
Pardeshi, I.A.: Flow and Heat Transfer in an L-shaped Cooling Passage with Ribs and Pin Fins for the Trailing Edge of a Gas-Turbine Vane and Blade. Open Access Theses. Paper 87 (2013)
Raji, A., Hasnaoui, M., Bahlaoui, A.: Numerical study of natural convection dominated heat transfer in a ventilated cavity: case of forced flow playing simultaneous assisting and opposing roles. Int. J. Heat Fluid Flow 29, 1174–1181 (2008)
Shahi, M., Mahmoudi, A.H., Talebi, F.: Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid. Int. Commun. Heat Mass Transf. 37, 201–213 (2010)
Shenoy, A., Sheremet, M.A., Pop, I.: Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids. CRC Press, Boca Raton (2016)
Sheremet, M.A., Pop, I., Ishak, A.: Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transp. Porous Media 109, 131–145 (2015)
Sheremet, M.A., Trifonova, T.A.: Unsteady conjugate natural convection in a vertical cylinder partially filled with a porous medium. Numer. Heat Transf. A 64, 994–1015 (2013)
Sheremet, M.A., Trifonova, T.A.: Unsteady conjugate natural convection in a vertical cylinder containing a horizontal porous layer: Darcy model and Brinkman-extended Darcy model. Transp. Porous Media. 101, 437–463 (2014)
Showole, R.A., Tarasuk, J.D.: Experimental and numerical studies of natural convection with flow separation in upward-facing inclined open cavities. J. Heat Transf. 115, 592–605 (1993)
Singh, A.K., Thorpe, G.R.: Natural convection in a confined fluid overlying a porous layer-A comparison study of different models. Indian J. Pure Appl. Math. 26, 81–95 (1995)
Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)
Vafai, K., Ettefagh, J.: The effects of sharp corners on buoyancy-driven flows with particular emphasis on outer boundaries. Int. J. Heat Mass Transf. 33, 2311–2328 (1990)
Vafai, K., Ettefagh, J.: Thermal and fluid flow instabilities in buoyancy-driven flows in open-ended cavities. Int. J. Heat Mass Transf. 33, 2329–2344 (1990)
Vafai, K. (ed.): Handbook of Porous Media, 3rd edn. CRC Press, Boca Raton (2015)
Xu, H., Xiao, R., Karimi, F., Yang, M., Zhang, Y.: Numerical study of double diffusive mixed convection around a heated cylinder in an enclosure. Int. J. Therm. Sci. 78, 169–181 (2014)
Zhao, P., Chen, C.F.: Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model. Int. J Heat Mass Transf. 44, 4625–4633 (2001)