Mixed 3D/2D dimensional TiO<sub>2</sub> nanoflowers/MoSe<sub>2</sub> nanosheets for enhanced photoelectrochemical hydrogen generation

Journal of the American Ceramic Society - Tập 103 Số 2 - Trang 1187-1196 - 2020
Hongxia Li1, Chao Yang1, Xiaoyang Wang1, Jun Zhang1, Junhua Xi1, Gang Du1, Zhenguo Ji1
1College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China

Tóm tắt

AbstractRecently, various kinds of methods have been implemented to broaden the visible light response and fasten the carrier's separation of TiO2‐based photoanodes. As a promising hydrogen evolution reaction catalyst, MoSe2 is rarely investigated especially combined with TiO2 photoanode. In this study, we report a composite photoanode of MoSe2 nanosheets (with 1T and 2H phase)‐modified 3D TiO2 nanoflowers (NFs).The hybrid of 3D TiO2 NFs/2D MoSe2 holds great promise in boosting the PEC water splitting performance. TiO2 NFs/MoSe2‐15 showed the largest photocurrent density of 1.40 mA/cm2, which was five times higher than that of pure TiO2 NFs under AM1.5G illumination. Moreover 10 times improvement in current density was observed for the TiO2 NFs/MoSe2‐15 under visible light. This increase could be ascribed to synergistic effects of light absorption enhancement and more efficient carrier separation after MoSe2 modification. This study not only provides a reference to boost the photoelectrochemical performance of photoelectrodes but also renders a perspective on the potential applications of MoSe2 nanosheets.

Từ khóa


Tài liệu tham khảo

10.1016/j.nanoen.2013.01.010

10.1016/j.jallcom.2017.06.246

10.1021/sc400417u

10.1039/C4CP03043E

10.1039/C6TA04846C

10.1039/C4CP05793G

10.1039/C4TA00176A

10.1016/j.elecom.2014.09.011

10.1021/acs.jpcc.5b07533

10.1016/j.jcis.2016.11.041

10.1088/0022-3727/49/31/315304

10.1016/j.apcatb.2016.08.031

10.1002/smll.201201161

10.1039/C8AY01050A

10.1039/c2jm30457k

10.1016/j.physe.2018.11.018

10.1016/j.apcatb.2018.03.102

10.1039/C5CC00803D

10.1002/adfm.201300125

10.1002/adma.201701392

10.1002/adma.201700748

10.1039/C3TA13584E

10.1016/j.cej.2018.08.185

10.1002/smll.201401598

10.1016/j.apmt.2017.01.006

10.1039/C4TA00458B

10.1016/j.mattod.2016.10.002

10.1038/nphoton.2015.282

10.1103/PhysRevB.84.205325

10.1016/j.apcatb.2018.11.033

10.1016/j.ijhydene.2018.10.214

10.1039/C3RA42564A

10.1021/acsami.9b04785

10.1007/s10854-016-5761-1

10.1016/j.materresbull.2018.11.009

10.1016/0009-2614(82)83672-5

10.1016/j.jhazmat.2018.01.013

10.1016/j.jallcom.2019.03.261

10.1016/j.tsf.2018.07.010