Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems

Tarek M. Abed‐Elhameed1, Tarek Aboelenen1
1Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

Tóm tắt

AbstractIn this paper, we investigate the generalized fractional system (GFS) with order lying in $(1, 2)$ ( 1 , 2 ) . We present stability analysis of GFS by two methods. First, the stability analysis of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L) function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct method, we study the M–L stability of our system with order lying in $(1, 2)$ ( 1 , 2 ) . Using the modified predictor–corrector method, the solutions of GFSs are calculated and they are more complicated than the classical fractional one. Based on linear feedback control, we investigate a theorem to control the chaotic GFSs with order lying in $(1, 2)$ ( 1 , 2 ) . We present an example to verify the validity of control theorem. We state and prove a theorem to calculate the analytical formula of controllers that are used to achieve synchronization between two different chaotic GFSs. An example to study the synchronization for systems with orders lying in $(1, 2)$ ( 1 , 2 ) is given. We found an agreement between analytical results and numerical simulations.

Từ khóa


Tài liệu tham khảo

Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in $(0, 2)$. ISA Trans. 56, 102–110 (2015)

Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 48, 3114–3123 (2009)

Xu, B., Chen, D., Zhang, H., Wang, F.: Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system. Chaos Solitons Fractals 75, 50–61 (2015)

Xu, Y., Li, Y., Liu, D.: Response of fractional oscillators with viscoelastic term under random excitation. J. Comput. Nonlinear Dyn. 9, 031015 (2014)

Xin, B., Zhang, J.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79, 1399–1409 (2015)

Ghasemi, S., Tabesh, A., Askari-Marnani, J.: Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Trans. Energy Convers. 29, 780–787 (2014)

Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)

Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)

Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)

Pinto, C.M.: Strange dynamics in a fractional derivative of complex-order network of chaotic oscillators. Int. J. Bifurc. Chaos 25, 1550003 (2015)

Yang, X., Song, Q., Liu, Y., Zhao, Z.: Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152, 19–26 (2015)

Fukunaga, M., Shimizu, N.: Fractional derivative constitutive models for finite deformation of viscoelastic materials. J. Comput. Nonlinear Dyn. 10, 061002 (2015)

Chen, Y.Q., Ahn, H.-S., Xue, D.: Robust controllability of interval fractional order linear time invariant systems. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 47438, pp. 1537–1545 (2005)

Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)

Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

Huang, L., Bae, Y.: Chaotic dynamics of the fractional-love model with an external environment. Entropy 20, 53 (2018)

Huang, L., Bae, Y.: Nonlinear behavior in fractional-order Romeo and Juliet’s love model influenced by external force with fuzzy function. Int. J. Fuzzy Syst. 21, 630–638 (2019)

Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

Mahmoud, G.M., Arafa, A.A., Abed-Elhameed, T.M., Mahmoud, E.E.: Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control. Chaos Solitons Fractals 104, 680–692 (2017)

Mahmoud, G.M., Aboelenen, T., Abed-Elhameed, T.M., Farghaly, A.A.: Generalized Wright stability for distributed fractional-order nonlinear dynamical systems and their synchronization. Nonlinear Dyn. 97, 413–429 (2019)

Srivastava, M., Ansari, S., Agrawal, S., Das, S., Leung, A.: Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn. 76, 905–914 (2014)

Bao, H.-B., Cao, J.-D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)

Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M.: Active control technique of fractional-order chaotic complex systems. Eur. Phys. J. Plus 131, 200 (2016)

Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M.: On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization. Optik, Int. J. Light Electron Opt. 130, 398–406 (2017)

Baleanu, D., Wu, G.-C., Zeng, S.-D.: Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals 102, 99–105 (2017)

Wu, G.-C., Baleanu, D., Lin, Z.-X.: Image encryption technique based on fractional chaotic time series. J. Vib. Control 22, 2092–2099 (2016)

Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 063502 (2015)

Ren, J., Zhai, C.: Stability analysis for generalized fractional differential systems and applications. Chaos Solitons Fractals 139, 110009 (2020)

Odibat, Z., Baleanu, D.: Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative. Chin. J. Phys. 77, 1003–1014 (2022)

Odibat, Z., Erturk, V.S., Kumar, P., Govindaraj, V.: Dynamics of generalized Caputo type delay fractional differential equations using a modified predictor–corrector scheme. Phys. Scr. 96, 125213 (2021)

Ren, J., Zhai, C.: Stability analysis of generalized neutral fractional differential systems with time delays. Appl. Math. Lett. 116, 106987 (2021)

Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10, 2607–2619 (2017)

Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 156, 94–105 (2020)

Cai, S., Hou, M.: Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control. Chaos Solitons Fractals 146, 110901 (2021)

Mahmoud, G.M., Aboelenen, T., Abed-Elhameed, T.M., Farghaly, A.A.: On boundedness and projective synchronization of distributed order neural networks. Appl. Math. Comput. 404, 126198 (2021)

Shao, S., Chen, M., Yan, X.: Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn. 83, 1855–1866 (2016)

Hassani, H., Machado, J.T., Mehrabi, S.: An optimization technique for solving a class of nonlinear fractional optimal control problems: application in cancer treatment. Appl. Math. Model. 93, 868–884 (2021)

Mandal, M., Jana, S., Nandi, S.K., Khatua, A., Adak, S., Kar, T.: A model based study on the dynamics of COVID-19: prediction and control. Chaos Solitons Fractals 136, 109889 (2020)

Bettayeb, M., Al-Saggaf, U.M., Djennoune, S.: Single channel secure communication scheme based on synchronization of fractional-order chaotic Chua’s systems. Trans. Inst. Meas. Control 40, 3651–3664 (2018)

Mahmoud, G.M., Farghaly, A.A., Abed-Elhameed, T.M., Aly, S.A., Arafa, A.A.: Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control. Eur. Phys. J. Plus 135, 32 (2020)

Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 13, 1246–1255 (2008)

Jarad, F., Abdeljawad, T.: A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 1, 88–98 (2018)

Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations (1993)

Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2004)

Luo, J., Li, G., Liu, H.: Linear control of fractional-order financial chaotic systems with input saturation. Discrete Dyn. Nat. Soc. 2014, Article ID 802429 (2014)

Chen, L., Chai, Y., Wu, R., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II, Express Briefs 59, 602–606 (2012)

Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

Wen, X.-J., Wu, Z.-M., Lu, J.-G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II, Express Briefs 55, 1178–1182 (2008)