Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in $(0, 2)$. ISA Trans. 56, 102–110 (2015)
Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 48, 3114–3123 (2009)
Xu, B., Chen, D., Zhang, H., Wang, F.: Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system. Chaos Solitons Fractals 75, 50–61 (2015)
Xu, Y., Li, Y., Liu, D.: Response of fractional oscillators with viscoelastic term under random excitation. J. Comput. Nonlinear Dyn. 9, 031015 (2014)
Xin, B., Zhang, J.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79, 1399–1409 (2015)
Ghasemi, S., Tabesh, A., Askari-Marnani, J.: Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Trans. Energy Convers. 29, 780–787 (2014)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)
Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)
Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)
Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)
Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)
Pinto, C.M.: Strange dynamics in a fractional derivative of complex-order network of chaotic oscillators. Int. J. Bifurc. Chaos 25, 1550003 (2015)
Yang, X., Song, Q., Liu, Y., Zhao, Z.: Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152, 19–26 (2015)
Fukunaga, M., Shimizu, N.: Fractional derivative constitutive models for finite deformation of viscoelastic materials. J. Comput. Nonlinear Dyn. 10, 061002 (2015)
Chen, Y.Q., Ahn, H.-S., Xue, D.: Robust controllability of interval fractional order linear time invariant systems. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 47438, pp. 1537–1545 (2005)
Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)
Huang, L., Bae, Y.: Chaotic dynamics of the fractional-love model with an external environment. Entropy 20, 53 (2018)
Huang, L., Bae, Y.: Nonlinear behavior in fractional-order Romeo and Juliet’s love model influenced by external force with fuzzy function. Int. J. Fuzzy Syst. 21, 630–638 (2019)
Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)
Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)
Mahmoud, G.M., Arafa, A.A., Abed-Elhameed, T.M., Mahmoud, E.E.: Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control. Chaos Solitons Fractals 104, 680–692 (2017)
Mahmoud, G.M., Aboelenen, T., Abed-Elhameed, T.M., Farghaly, A.A.: Generalized Wright stability for distributed fractional-order nonlinear dynamical systems and their synchronization. Nonlinear Dyn. 97, 413–429 (2019)
Srivastava, M., Ansari, S., Agrawal, S., Das, S., Leung, A.: Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn. 76, 905–914 (2014)
Bao, H.-B., Cao, J.-D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)
Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M.: Active control technique of fractional-order chaotic complex systems. Eur. Phys. J. Plus 131, 200 (2016)
Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M.: On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization. Optik, Int. J. Light Electron Opt. 130, 398–406 (2017)
Baleanu, D., Wu, G.-C., Zeng, S.-D.: Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals 102, 99–105 (2017)
Wu, G.-C., Baleanu, D., Lin, Z.-X.: Image encryption technique based on fractional chaotic time series. J. Vib. Control 22, 2092–2099 (2016)
Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 063502 (2015)
Ren, J., Zhai, C.: Stability analysis for generalized fractional differential systems and applications. Chaos Solitons Fractals 139, 110009 (2020)
Odibat, Z., Baleanu, D.: Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative. Chin. J. Phys. 77, 1003–1014 (2022)
Odibat, Z., Erturk, V.S., Kumar, P., Govindaraj, V.: Dynamics of generalized Caputo type delay fractional differential equations using a modified predictor–corrector scheme. Phys. Scr. 96, 125213 (2021)
Ren, J., Zhai, C.: Stability analysis of generalized neutral fractional differential systems with time delays. Appl. Math. Lett. 116, 106987 (2021)
Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10, 2607–2619 (2017)
Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)
Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 156, 94–105 (2020)
Cai, S., Hou, M.: Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control. Chaos Solitons Fractals 146, 110901 (2021)
Mahmoud, G.M., Aboelenen, T., Abed-Elhameed, T.M., Farghaly, A.A.: On boundedness and projective synchronization of distributed order neural networks. Appl. Math. Comput. 404, 126198 (2021)
Shao, S., Chen, M., Yan, X.: Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn. 83, 1855–1866 (2016)
Hassani, H., Machado, J.T., Mehrabi, S.: An optimization technique for solving a class of nonlinear fractional optimal control problems: application in cancer treatment. Appl. Math. Model. 93, 868–884 (2021)
Mandal, M., Jana, S., Nandi, S.K., Khatua, A., Adak, S., Kar, T.: A model based study on the dynamics of COVID-19: prediction and control. Chaos Solitons Fractals 136, 109889 (2020)
Bettayeb, M., Al-Saggaf, U.M., Djennoune, S.: Single channel secure communication scheme based on synchronization of fractional-order chaotic Chua’s systems. Trans. Inst. Meas. Control 40, 3651–3664 (2018)
Mahmoud, G.M., Farghaly, A.A., Abed-Elhameed, T.M., Aly, S.A., Arafa, A.A.: Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control. Eur. Phys. J. Plus 135, 32 (2020)
Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 13, 1246–1255 (2008)
Jarad, F., Abdeljawad, T.: A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 1, 88–98 (2018)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations (1993)
Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2004)
Luo, J., Li, G., Liu, H.: Linear control of fractional-order financial chaotic systems with input saturation. Discrete Dyn. Nat. Soc. 2014, Article ID 802429 (2014)
Chen, L., Chai, Y., Wu, R., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II, Express Briefs 59, 602–606 (2012)
Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)
Wen, X.-J., Wu, Z.-M., Lu, J.-G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II, Express Briefs 55, 1178–1182 (2008)