Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance

Current Biology - Tập 28 Số 4 - Trang R170-R185 - 2018
Sarah Pickles1, Pierre Vigié2,3, Richard J. Youle1
1Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
2CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
3Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sagan, 1967, On the origin of mitosing cells, J. Theor. Biol., 14, 255, 10.1016/0022-5193(67)90079-3

Cai, 2017, Prion-like polymerization in immunity and inflammation, Cold Spring Harb. Persp. Biol., 9

Wang, 2009, The role of mitochondria in apoptosis, Annu. Rev. Genet., 43, 95, 10.1146/annurev-genet-102108-134850

Lemasters, 2005, Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging, Rejuven. Res., 8, 3, 10.1089/rej.2005.8.3

Dikic, 2017, Proteasomal and autophagic degradation systems, Annu. Rev. Biochem, 86, 193, 10.1146/annurev-biochem-061516-044908

Costello, 2013, Autophagy and mitophagy participate in ocular lens organelle degradation, Exp. Eye Res., 116, 141, 10.1016/j.exer.2013.08.017

Reme, 1977, The effects of hibernation on cone visual cells in the ground squirrel. Invest. Ophthalmol, Vis. Sci., 16, 815

Dzierzak, 2013, Erythropoiesis: development and differentiation, Cold Spring Harb. Persp. Med., 3

Aerbajinai, 2003, The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation, Blood, 102, 712, 10.1182/blood-2002-11-3324

Diwan, 2007, Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis, Proc. Natl. Acad. Sci. USA, 104, 6794, 10.1073/pnas.0610666104

Schweers, 2007, NIX is required for programmed mitochondrial clearance during reticulocyte maturation, Proc. Natl. Acad. Sci. USA, 104, 19500, 10.1073/pnas.0708818104

Sandoval, 2008, Essential role for Nix in autophagic maturation of erythroid cells, Nature, 454, 232, 10.1038/nature07006

dSchwarten, 2009, Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy, Autophagy, 5, 690, 10.4161/auto.5.5.8494

Novak, 2010, Nix is a selective autophagy receptor for mitochondrial clearance, EMBO Rep, 11, 45, 10.1038/embor.2009.256

Zhang, 2012, A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes, Autophagy, 8, 1325, 10.4161/auto.20764

Honda, 2014, Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes, Nat. Commun, 5, 4004, 10.1038/ncomms5004

Zhang, 2009, Autophagy-dependent and -independent mechanisms of mitochondrial clearance during reticulocyte maturation, Autophagy, 5, 1064, 10.4161/auto.5.7.9749

Kundu, 2008, Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation, Blood, 112, 1493, 10.1182/blood-2008-02-137398

Egan, 2011, Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, 331, 456, 10.1126/science.1196371

Matsushima, 1998, Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chrom, Cancer, 21, 230

Tracy, 2007, BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy, Mol. Cell. Biol., 27, 6229, 10.1128/MCB.02246-06

Hamacher-Brady, 2007, Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy, Cell Death Diff, 14, 146, 10.1038/sj.cdd.4401936

Sowter, 2001, HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors, Cancer Res., 61, 6669

Bruick, 2000, Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia, Proc. Natl. Acad. Sci. USA, 97, 9082, 10.1073/pnas.97.16.9082

Zhu, 2013, Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis, J. Biol. Chem., 288, 1099, 10.1074/jbc.M112.399345

Hanna, 2012, Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy, J. Biol. Chem., 287, 19094, 10.1074/jbc.M111.322933

Aouacheria, 2005, Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators, Mol. Biol. Evol., 22, 2395, 10.1093/molbev/msi234

Narendra, 2008, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol., 183, 795, 10.1083/jcb.200809125

Kalia, 2015, Parkinson's disease, Lancet, 386, 896, 10.1016/S0140-6736(14)61393-3

Schapira, 1989, Mitochondrial complex I deficiency in Parkinson's disease, Lancet, 1, 1269, 10.1016/S0140-6736(89)92366-0

Bender, 2006, High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nat. Genet., 38, 515, 10.1038/ng1769

Kraytsberg, 2006, Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons, Nature Genet., 38, 518, 10.1038/ng1778

Clark, 2006, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 441, 1162, 10.1038/nature04779

Greene, 2003, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc. Natl. Acad. Sci. USA, 100, 4078, 10.1073/pnas.0737556100

Park, 2006, Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, 441, 1157, 10.1038/nature04788

Jin, 2010, Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J, Cell Biol., 191, 933, 10.1083/jcb.201008084

Deas, 2011, PINK1 cleavage at position A103 by the mitochondrial protease PARL, Hum. Mol. Genet., 20, 867, 10.1093/hmg/ddq526

Meissner, 2011, The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking, J. Neurochem, 117, 856, 10.1111/j.1471-4159.2011.07253.x

Yamano, 2013, PINK1 is degraded through the N-end rule pathway, Autophagy, 9, 1758, 10.4161/auto.24633

Lazarou, 2012, Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin, Dev. Cell, 22, 320, 10.1016/j.devcel.2011.12.014

Okatsu, 2013, A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment, J. Biol. Chem., 288, 36372, 10.1074/jbc.M113.509653

Hasson, 2013, High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy, Nature, 504, 291, 10.1038/nature12748

Kondapalli, 2012, PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biol., 2, 120080, 10.1098/rsob.120080

Shiba-Fukushima, 2012, PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy, Sci. Rep, 2, 1002, 10.1038/srep01002

Trempe, 2013, Structure of parkin reveals mechanisms for ubiquitin ligase activation, Science, 340, 1451, 10.1126/science.1237908

Ordureau, 2014, Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis, Mol. Cell, 56, 360, 10.1016/j.molcel.2014.09.007

Riley, 2013, Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases, Nat. Commun, 4, 1982, 10.1038/ncomms2982

Wauer, 2013, Structure of the human Parkin ligase domain in an autoinhibited state, EMBO J, 32, 2099, 10.1038/emboj.2013.125

Kane, 2014, PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity, J. Cell Biol., 205, 143, 10.1083/jcb.201402104

Kazlauskaite, 2014, Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65, Biochem. J., 460, 127, 10.1042/BJ20140334

Koyano, 2014, Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, 510, 162, 10.1038/nature13392

Shiba-Fukushima, 2014, Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering, PLoS Genet., 10, e1004861, 10.1371/journal.pgen.1004861

Lazarou, 2015, The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy, Nature, 524, 309, 10.1038/nature14893

Okatsu, 2015, Phosphorylated ubiquitin chain is the genuine Parkin receptor. J, Cell Biol., 209, 111, 10.1083/jcb.201410050

Wauer, 2015, Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis, EMBO J, 34, 307, 10.15252/embj.201489847

Kumar, 2017, Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity, Nat. Struc. Mol. Biol., 24, 475, 10.1038/nsmb.3400

Wauer, 2015, Mechanism of phospho-ubiquitin-induced PARKIN activation, Nature, 524, 370, 10.1038/nature14879

Stolz, 2014, Cargo recognition and trafficking in selective autophagy, Nat. Cell Biol., 16, 495, 10.1038/ncb2979

Geisler, 2010, PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat. Cell Biol., 12, 119, 10.1038/ncb2012

Narendra, 2010, p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, 6, 1090, 10.4161/auto.6.8.13426

Okatsu, 2010, p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria, Genes Cells, 15, 887, 10.1111/j.1365-2443.2010.01426.x

Heo, 2015, The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy, Mol. Cell, 60, 7, 10.1016/j.molcel.2015.08.016

Wong, 2014, Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation, Proc. Natl. Acad. Sci. USA, 111, E4439, 10.1073/pnas.1405752111

Moore, 2016, Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy, Proc. Natl. Acad. Sci. USA, 113, E3349, 10.1073/pnas.1523810113

Richter, 2016, Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria, Proc. Natl. Acad. Sci. USA, 113, 4039, 10.1073/pnas.1523926113

Wild, 2011, Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth, Science, 333, 228, 10.1126/science.1205405

Matsumoto, 2015, TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation, Hum. Mol. Genet., 24, 4429, 10.1093/hmg/ddv179

Nguyen, 2016, Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation, J. Cell Biol., 215, 857, 10.1083/jcb.201607039

Sarraf, 2013, Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization, Nature, 496, 372, 10.1038/nature12043

Wei, 2017, Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor, Cell, 168, 224, 10.1016/j.cell.2016.11.042

Breton, 2015, Atypical mitochondrial inheritance patterns in eukaryotes, Genome, 58, 423, 10.1139/gen-2015-0090

Pyle, 2015, Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans, PLoS Genet., 11, e1005040, 10.1371/journal.pgen.1005040

Sharpley, 2012, Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition, Cell, 151, 333, 10.1016/j.cell.2012.09.004

Hadjivasiliou, 2013, Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes, Proc. Biol. Sci., 280, 20131920, 10.1098/rspb.2013.1920

Sutovsky, 2000, Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos, Biol. Reprod, 63, 582, 10.1095/biolreprod63.2.582

Luo, 2013, Unique insights into maternal mitochondrial inheritance in mice, Proc. Natl. Acad. Sci. USA, 110, 13038, 10.1073/pnas.1303231110

Song, 2016, Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization, Proc. Natl. Acad. Sci. USA, 113, E5261, 10.1073/pnas.1605844113

Kim, 2013, VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations, Neuron, 78, 65, 10.1016/j.neuron.2013.02.029

Tanaka, 2010, Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J, Cell Biol., 191, 1367, 10.1083/jcb.201007013

Xu, 2011, The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover, Mol. Biol. Cell, 22, 291, 10.1091/mbc.e10-09-0748

Rojansky, 2016, Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1, eLife, 5, e17896, 10.7554/eLife.17896

Onoue, 2013, Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology, J. Cell Sci., 126, 176, 10.1242/jcs.111211

Yamano, 2014, Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy, eLife, 3, e01612, 10.7554/eLife.01612

Politi, 2014, Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev, Cell, 29, 305

Al Rawi, 2011, Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission, Science, 334, 1144, 10.1126/science.1211878

DeLuca, 2012, Barriers to male transmission of mitochondrial DNA in sperm development, Dev. Cell, 22, 660, 10.1016/j.devcel.2011.12.021

Zhou, 2016, Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization, Science, 353, 394, 10.1126/science.aaf4777

Sato, 2011, Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos, Science, 334, 1141, 10.1126/science.1210333

Kanki, 2009, Atg32 is a mitochondrial protein that confers selectivity during mitophagy, Dev. Cell, 17, 98, 10.1016/j.devcel.2009.06.014

Okamoto, 2009, Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy, Dev. Cell, 17, 87, 10.1016/j.devcel.2009.06.013

Kondo-Okamoto, 2012, Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy, J. Biol. Chem., 287, 10631, 10.1074/jbc.M111.299917

Shintani, 2002, Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway, Dev. Cell, 3, 825, 10.1016/S1534-5807(02)00373-8

Kanki, 2008, Mitophagy in yeast occurs through a selective mechanism, J. Biol. Chem., 283, 32386, 10.1074/jbc.M802403200

Mao, 2013, The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy, Dev. Cell, 26, 9, 10.1016/j.devcel.2013.05.024

Eiyama, 2013, Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast, FEBS Lett., 587, 1787, 10.1016/j.febslet.2013.04.030

Aoki, 2011, Phosphorylation of Serine 114 on Atg32 mediates mitophagy, Mol. Biol. Cell, 22, 3206, 10.1091/mbc.e11-02-0145

Kissova, 2004, Uth1p is involved in the autophagic degradation of mitochondria, J. Biol. Chem., 279, 39068, 10.1074/jbc.M406960200

Priault, 2005, Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast, Cell Death Diff., 12, 1613, 10.1038/sj.cdd.4401697

Campbell, 2012, Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number, Biochim. Biophys. Acta, 1819, 921, 10.1016/j.bbagrm.2012.03.002

Dhar, 2008, Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons, J. Biol. Chem., 283, 3120, 10.1074/jbc.M707587200

Ongwijitwat, 2006, Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs, Gene, 374, 39, 10.1016/j.gene.2006.01.009

Wu, 1999, Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1, Cell, 98, 115, 10.1016/S0092-8674(00)80611-X

Lehman, 2000, Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis, J. Clin. Invest., 106, 847, 10.1172/JCI10268

Baar, 2002, Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1, FASEB J., 16, 1879, 10.1096/fj.02-0367com

Goto, 2000, cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats, Biochem. Biophys. Res. Comm., 274, 350, 10.1006/bbrc.2000.3134

Pilegaard, 2003, Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle, J. Physiol., 546, 851, 10.1113/jphysiol.2002.034850

Arany, 2005, Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle, Cell Metab., 1, 259, 10.1016/j.cmet.2005.03.002

Garcia, 2017, AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance, Mol. Cell, 66, 789, 10.1016/j.molcel.2017.05.032

Jager, 2007, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci. USA, 104, 12017, 10.1073/pnas.0705070104

Leick, 2008, PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle, Am. J. Physiol. Endocrin. Metab., 294, E463, 10.1152/ajpendo.00666.2007

Mizushima, 2010, The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin, Cell Biol., 22, 132

Toyama, 2016, AMP-activated protein kinase mediates mitochondrial fission in response to energy stress, Science, 351, 275, 10.1126/science.aab4138

Settembre, 2011, TFEB links autophagy to lysosomal biogenesis, Science, 332, 1429, 10.1126/science.1204592

Napolitano, 2016, TFEB at a glance. J, Cell Sci., 129, 2475, 10.1242/jcs.146365

Settembre, 2013, TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop, Nat. Cell Biol., 15, 647, 10.1038/ncb2718

Tsunemi, 2012, PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function, Sci. Transl. Med., 4, 10.1126/scitranslmed.3003799

Scott, 2014, GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy, J. Biol. Chem., 289, 2864, 10.1074/jbc.M113.521641

Nezich, 2015, MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J, Cell Biol., 210, 435, 10.1083/jcb.201501002

Quiros, 2015, New roles for mitochondrial proteases in health, ageing and disease, Nat. Rev. Mol. Cell Biol., 16, 345, 10.1038/nrm3984

Karbowski, 2011, Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation, Curr. Opin. Cell Biol., 23, 476, 10.1016/j.ceb.2011.05.007

Yonashiro, 2006, A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics, EMBO J., 25, 3618, 10.1038/sj.emboj.7601249

Yun, 2014, MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin, eLife, 3, e01958, 10.7554/eLife.01958

Kim, 2012, Metabolic labeling reveals proteome dynamics of mouse mitochondria, Mol. Cell. Proteomics, 11, 1586, 10.1074/mcp.M112.021162

Price, 2010, Analysis of proteome dynamics in the mouse brain, Proc. Natl. Acad. Sci. USA, 107, 14508, 10.1073/pnas.1006551107

Vincow, 2013, The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo, Proc. Natl. Acad. Sci. USA, 110, 6400, 10.1073/pnas.1221132110

Yang, 2013, Bit-by-bit autophagic removal of parkin-labelled mitochondria, Nat. Commun, 4, 2428, 10.1038/ncomms3428

Jin, 2013, The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria, Autophagy, 9, 1750, 10.4161/auto.26122

Burman, 2017, Mitochondrial fission facilitates the selective mitophagy of protein aggregates, J. Cell Biol., 216, 3231, 10.1083/jcb.201612106

Burbulla, 2014, Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1, Cell Death Dis., 5, e1180, 10.1038/cddis.2014.103

Rainbolt, 2013, Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation, Cell Metab., 18, 908, 10.1016/j.cmet.2013.11.006

Yamashita, 2016, Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy, J. Cell Biol., 215, 649, 10.1083/jcb.201605093

Soubannier, 2012, A vesicular transport pathway shuttles cargo from mitochondria to lysosomes, Curr. Biol., 22, 135, 10.1016/j.cub.2011.11.057

McLelland, 2014, Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control, EMBO J., 33, 282

McLelland, 2016, Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system, J. Cell Biol., 214, 275, 10.1083/jcb.201603105

Abeliovich, 2013, Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy, Nat. Commun., 4, 2789, 10.1038/ncomms3789

Hughes, 2016, Selective sorting and destruction of mitochondrial membrane proteins in aged yeast, eLife, 5, e13943, 10.7554/eLife.13943

Nargund, 2012, Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation, Science, 337, 587, 10.1126/science.1223560

Benedetti, 2006, Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response, Genetics, 174, 229, 10.1534/genetics.106.061580

Haynes, 2007, ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans, Dev. Cell, 13, 467, 10.1016/j.devcel.2007.07.016

Nargund, 2015, Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt), Mol. Cell, 58, 123, 10.1016/j.molcel.2015.02.008

Munch, 2016, Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation, Nature, 534, 710, 10.1038/nature18302

Martinus, 1996, Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome, Eur. J. Biochem., 240, 98, 10.1111/j.1432-1033.1996.0098h.x

Zhao, 2002, A mitochondrial specific stress response in mammalian cells, EMBO J., 21, 4411, 10.1093/emboj/cdf445

Aldridge, 2007, Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements, PLoS One, 2, e874, 10.1371/journal.pone.0000874

Fiorese, 2016, The transcription factor ATF5 mediates a mammalian mitochondrial UPR, Curr. Biol., 26, 2037, 10.1016/j.cub.2016.06.002

Quiros, 2017, Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals, J. Cell Biol., 216, 2027, 10.1083/jcb.201702058

Wrobel, 2015, Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol, Nature, 524, 485, 10.1038/nature14951

Wang, 2015, A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death, Nature, 524, 481, 10.1038/nature14859

Hamalainen, 2013, Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model, Proc. Natl. Acad. Sci. USA, 110, E3622, 10.1073/pnas.1311660110

Suen, 2010, Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells, Proc. Natl. Acad. Sci. USA, 107, 11835, 10.1073/pnas.0914569107

Houtkooper, 2013, Mitonuclear protein imbalance as a conserved longevity mechanism, Nature, 497, 451, 10.1038/nature12188

Gitschlag, 2016, Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans, Cell Metab., 24, 91, 10.1016/j.cmet.2016.06.008

Lin, 2016, Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response, Nature, 533, 416, 10.1038/nature17989

Valenci, 2015, Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans, Mitochondrion, 20, 64, 10.1016/j.mito.2014.11.001

Trifunovic, 2004, Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature, 429, 417, 10.1038/nature02517

Pickrell, 2015, Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress, Neuron, 87, 371, 10.1016/j.neuron.2015.06.034

Khan, 2014, Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3, EMBO Mol. Med., 6, 721, 10.1002/emmm.201403943

Song, 2017, Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism, Neurobiol. Dis., 100, 30, 10.1016/j.nbd.2016.12.024

Pickrell, 2015, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease, Neuron, 85, 257, 10.1016/j.neuron.2014.12.007

Shin, 2011, PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease, Cell, 144, 689, 10.1016/j.cell.2011.02.010

Dave, 2014, Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease, Neurobiol. Dis., 70, 190, 10.1016/j.nbd.2014.06.009

Sterky, 2011, Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo, Proc. Natl. Acad. Sci. USA, 108, 12937, 10.1073/pnas.1103295108

Ekstrand, 2007, Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons, Proc. Natl. Acad. Sci. USA, 104, 1325, 10.1073/pnas.0605208103

Hernandez, 2013, MitoTimer: a novel tool for monitoring mitochondrial turnover, Autophagy, 9, 1852, 10.4161/auto.26501

Stotland, 2016, alpha-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart, J. Mol. Cell. Cardiol., 90, 53, 10.1016/j.yjmcc.2015.11.032

Katayama, 2011, A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery, Chem. Biol., 18, 1042, 10.1016/j.chembiol.2011.05.013

McWilliams, 2016, mito-QC illuminates mitophagy and mitochondrial architecture in vivo, J. Cell Biol., 214, 333, 10.1083/jcb.201603039

Sun, 2015, Measuring in vivo mitophagy, Mol. Cell, 60, 685, 10.1016/j.molcel.2015.10.009

Ito, 2016, Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance, Science, 354, 1156, 10.1126/science.aaf5530

Katajisto, 2015, Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness, Science, 348, 340, 10.1126/science.1260384