Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sagan, 1967, On the origin of mitosing cells, J. Theor. Biol., 14, 255, 10.1016/0022-5193(67)90079-3
Cai, 2017, Prion-like polymerization in immunity and inflammation, Cold Spring Harb. Persp. Biol., 9
Wang, 2009, The role of mitochondria in apoptosis, Annu. Rev. Genet., 43, 95, 10.1146/annurev-genet-102108-134850
Lemasters, 2005, Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging, Rejuven. Res., 8, 3, 10.1089/rej.2005.8.3
Dikic, 2017, Proteasomal and autophagic degradation systems, Annu. Rev. Biochem, 86, 193, 10.1146/annurev-biochem-061516-044908
Costello, 2013, Autophagy and mitophagy participate in ocular lens organelle degradation, Exp. Eye Res., 116, 141, 10.1016/j.exer.2013.08.017
Reme, 1977, The effects of hibernation on cone visual cells in the ground squirrel. Invest. Ophthalmol, Vis. Sci., 16, 815
Dzierzak, 2013, Erythropoiesis: development and differentiation, Cold Spring Harb. Persp. Med., 3
Aerbajinai, 2003, The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation, Blood, 102, 712, 10.1182/blood-2002-11-3324
Diwan, 2007, Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis, Proc. Natl. Acad. Sci. USA, 104, 6794, 10.1073/pnas.0610666104
Schweers, 2007, NIX is required for programmed mitochondrial clearance during reticulocyte maturation, Proc. Natl. Acad. Sci. USA, 104, 19500, 10.1073/pnas.0708818104
Sandoval, 2008, Essential role for Nix in autophagic maturation of erythroid cells, Nature, 454, 232, 10.1038/nature07006
dSchwarten, 2009, Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy, Autophagy, 5, 690, 10.4161/auto.5.5.8494
Novak, 2010, Nix is a selective autophagy receptor for mitochondrial clearance, EMBO Rep, 11, 45, 10.1038/embor.2009.256
Zhang, 2012, A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes, Autophagy, 8, 1325, 10.4161/auto.20764
Honda, 2014, Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes, Nat. Commun, 5, 4004, 10.1038/ncomms5004
Zhang, 2009, Autophagy-dependent and -independent mechanisms of mitochondrial clearance during reticulocyte maturation, Autophagy, 5, 1064, 10.4161/auto.5.7.9749
Kundu, 2008, Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation, Blood, 112, 1493, 10.1182/blood-2008-02-137398
Egan, 2011, Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, 331, 456, 10.1126/science.1196371
Matsushima, 1998, Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chrom, Cancer, 21, 230
Tracy, 2007, BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy, Mol. Cell. Biol., 27, 6229, 10.1128/MCB.02246-06
Hamacher-Brady, 2007, Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy, Cell Death Diff, 14, 146, 10.1038/sj.cdd.4401936
Sowter, 2001, HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors, Cancer Res., 61, 6669
Bruick, 2000, Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia, Proc. Natl. Acad. Sci. USA, 97, 9082, 10.1073/pnas.97.16.9082
Zhu, 2013, Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis, J. Biol. Chem., 288, 1099, 10.1074/jbc.M112.399345
Hanna, 2012, Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy, J. Biol. Chem., 287, 19094, 10.1074/jbc.M111.322933
Aouacheria, 2005, Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators, Mol. Biol. Evol., 22, 2395, 10.1093/molbev/msi234
Narendra, 2008, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol., 183, 795, 10.1083/jcb.200809125
Schapira, 1989, Mitochondrial complex I deficiency in Parkinson's disease, Lancet, 1, 1269, 10.1016/S0140-6736(89)92366-0
Bender, 2006, High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nat. Genet., 38, 515, 10.1038/ng1769
Kraytsberg, 2006, Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons, Nature Genet., 38, 518, 10.1038/ng1778
Clark, 2006, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 441, 1162, 10.1038/nature04779
Greene, 2003, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc. Natl. Acad. Sci. USA, 100, 4078, 10.1073/pnas.0737556100
Park, 2006, Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, 441, 1157, 10.1038/nature04788
Jin, 2010, Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J, Cell Biol., 191, 933, 10.1083/jcb.201008084
Deas, 2011, PINK1 cleavage at position A103 by the mitochondrial protease PARL, Hum. Mol. Genet., 20, 867, 10.1093/hmg/ddq526
Meissner, 2011, The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking, J. Neurochem, 117, 856, 10.1111/j.1471-4159.2011.07253.x
Yamano, 2013, PINK1 is degraded through the N-end rule pathway, Autophagy, 9, 1758, 10.4161/auto.24633
Lazarou, 2012, Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin, Dev. Cell, 22, 320, 10.1016/j.devcel.2011.12.014
Okatsu, 2013, A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment, J. Biol. Chem., 288, 36372, 10.1074/jbc.M113.509653
Hasson, 2013, High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy, Nature, 504, 291, 10.1038/nature12748
Kondapalli, 2012, PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biol., 2, 120080, 10.1098/rsob.120080
Shiba-Fukushima, 2012, PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy, Sci. Rep, 2, 1002, 10.1038/srep01002
Trempe, 2013, Structure of parkin reveals mechanisms for ubiquitin ligase activation, Science, 340, 1451, 10.1126/science.1237908
Ordureau, 2014, Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis, Mol. Cell, 56, 360, 10.1016/j.molcel.2014.09.007
Riley, 2013, Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases, Nat. Commun, 4, 1982, 10.1038/ncomms2982
Wauer, 2013, Structure of the human Parkin ligase domain in an autoinhibited state, EMBO J, 32, 2099, 10.1038/emboj.2013.125
Kane, 2014, PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity, J. Cell Biol., 205, 143, 10.1083/jcb.201402104
Kazlauskaite, 2014, Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65, Biochem. J., 460, 127, 10.1042/BJ20140334
Koyano, 2014, Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, 510, 162, 10.1038/nature13392
Shiba-Fukushima, 2014, Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering, PLoS Genet., 10, e1004861, 10.1371/journal.pgen.1004861
Lazarou, 2015, The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy, Nature, 524, 309, 10.1038/nature14893
Okatsu, 2015, Phosphorylated ubiquitin chain is the genuine Parkin receptor. J, Cell Biol., 209, 111, 10.1083/jcb.201410050
Wauer, 2015, Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis, EMBO J, 34, 307, 10.15252/embj.201489847
Kumar, 2017, Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity, Nat. Struc. Mol. Biol., 24, 475, 10.1038/nsmb.3400
Wauer, 2015, Mechanism of phospho-ubiquitin-induced PARKIN activation, Nature, 524, 370, 10.1038/nature14879
Stolz, 2014, Cargo recognition and trafficking in selective autophagy, Nat. Cell Biol., 16, 495, 10.1038/ncb2979
Geisler, 2010, PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat. Cell Biol., 12, 119, 10.1038/ncb2012
Narendra, 2010, p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, 6, 1090, 10.4161/auto.6.8.13426
Okatsu, 2010, p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria, Genes Cells, 15, 887, 10.1111/j.1365-2443.2010.01426.x
Heo, 2015, The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy, Mol. Cell, 60, 7, 10.1016/j.molcel.2015.08.016
Wong, 2014, Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation, Proc. Natl. Acad. Sci. USA, 111, E4439, 10.1073/pnas.1405752111
Moore, 2016, Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy, Proc. Natl. Acad. Sci. USA, 113, E3349, 10.1073/pnas.1523810113
Richter, 2016, Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria, Proc. Natl. Acad. Sci. USA, 113, 4039, 10.1073/pnas.1523926113
Wild, 2011, Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth, Science, 333, 228, 10.1126/science.1205405
Matsumoto, 2015, TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation, Hum. Mol. Genet., 24, 4429, 10.1093/hmg/ddv179
Nguyen, 2016, Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation, J. Cell Biol., 215, 857, 10.1083/jcb.201607039
Sarraf, 2013, Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization, Nature, 496, 372, 10.1038/nature12043
Wei, 2017, Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor, Cell, 168, 224, 10.1016/j.cell.2016.11.042
Breton, 2015, Atypical mitochondrial inheritance patterns in eukaryotes, Genome, 58, 423, 10.1139/gen-2015-0090
Pyle, 2015, Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans, PLoS Genet., 11, e1005040, 10.1371/journal.pgen.1005040
Sharpley, 2012, Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition, Cell, 151, 333, 10.1016/j.cell.2012.09.004
Hadjivasiliou, 2013, Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes, Proc. Biol. Sci., 280, 20131920, 10.1098/rspb.2013.1920
Sutovsky, 2000, Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos, Biol. Reprod, 63, 582, 10.1095/biolreprod63.2.582
Luo, 2013, Unique insights into maternal mitochondrial inheritance in mice, Proc. Natl. Acad. Sci. USA, 110, 13038, 10.1073/pnas.1303231110
Song, 2016, Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization, Proc. Natl. Acad. Sci. USA, 113, E5261, 10.1073/pnas.1605844113
Kim, 2013, VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations, Neuron, 78, 65, 10.1016/j.neuron.2013.02.029
Tanaka, 2010, Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J, Cell Biol., 191, 1367, 10.1083/jcb.201007013
Xu, 2011, The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover, Mol. Biol. Cell, 22, 291, 10.1091/mbc.e10-09-0748
Rojansky, 2016, Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1, eLife, 5, e17896, 10.7554/eLife.17896
Onoue, 2013, Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology, J. Cell Sci., 126, 176, 10.1242/jcs.111211
Yamano, 2014, Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy, eLife, 3, e01612, 10.7554/eLife.01612
Politi, 2014, Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev, Cell, 29, 305
Al Rawi, 2011, Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission, Science, 334, 1144, 10.1126/science.1211878
DeLuca, 2012, Barriers to male transmission of mitochondrial DNA in sperm development, Dev. Cell, 22, 660, 10.1016/j.devcel.2011.12.021
Zhou, 2016, Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization, Science, 353, 394, 10.1126/science.aaf4777
Sato, 2011, Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos, Science, 334, 1141, 10.1126/science.1210333
Kanki, 2009, Atg32 is a mitochondrial protein that confers selectivity during mitophagy, Dev. Cell, 17, 98, 10.1016/j.devcel.2009.06.014
Okamoto, 2009, Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy, Dev. Cell, 17, 87, 10.1016/j.devcel.2009.06.013
Kondo-Okamoto, 2012, Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy, J. Biol. Chem., 287, 10631, 10.1074/jbc.M111.299917
Shintani, 2002, Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway, Dev. Cell, 3, 825, 10.1016/S1534-5807(02)00373-8
Kanki, 2008, Mitophagy in yeast occurs through a selective mechanism, J. Biol. Chem., 283, 32386, 10.1074/jbc.M802403200
Mao, 2013, The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy, Dev. Cell, 26, 9, 10.1016/j.devcel.2013.05.024
Eiyama, 2013, Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast, FEBS Lett., 587, 1787, 10.1016/j.febslet.2013.04.030
Aoki, 2011, Phosphorylation of Serine 114 on Atg32 mediates mitophagy, Mol. Biol. Cell, 22, 3206, 10.1091/mbc.e11-02-0145
Kissova, 2004, Uth1p is involved in the autophagic degradation of mitochondria, J. Biol. Chem., 279, 39068, 10.1074/jbc.M406960200
Priault, 2005, Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast, Cell Death Diff., 12, 1613, 10.1038/sj.cdd.4401697
Campbell, 2012, Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number, Biochim. Biophys. Acta, 1819, 921, 10.1016/j.bbagrm.2012.03.002
Dhar, 2008, Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons, J. Biol. Chem., 283, 3120, 10.1074/jbc.M707587200
Ongwijitwat, 2006, Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs, Gene, 374, 39, 10.1016/j.gene.2006.01.009
Wu, 1999, Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1, Cell, 98, 115, 10.1016/S0092-8674(00)80611-X
Lehman, 2000, Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis, J. Clin. Invest., 106, 847, 10.1172/JCI10268
Baar, 2002, Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1, FASEB J., 16, 1879, 10.1096/fj.02-0367com
Goto, 2000, cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats, Biochem. Biophys. Res. Comm., 274, 350, 10.1006/bbrc.2000.3134
Pilegaard, 2003, Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle, J. Physiol., 546, 851, 10.1113/jphysiol.2002.034850
Arany, 2005, Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle, Cell Metab., 1, 259, 10.1016/j.cmet.2005.03.002
Garcia, 2017, AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance, Mol. Cell, 66, 789, 10.1016/j.molcel.2017.05.032
Jager, 2007, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci. USA, 104, 12017, 10.1073/pnas.0705070104
Leick, 2008, PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle, Am. J. Physiol. Endocrin. Metab., 294, E463, 10.1152/ajpendo.00666.2007
Mizushima, 2010, The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin, Cell Biol., 22, 132
Toyama, 2016, AMP-activated protein kinase mediates mitochondrial fission in response to energy stress, Science, 351, 275, 10.1126/science.aab4138
Settembre, 2011, TFEB links autophagy to lysosomal biogenesis, Science, 332, 1429, 10.1126/science.1204592
Settembre, 2013, TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop, Nat. Cell Biol., 15, 647, 10.1038/ncb2718
Tsunemi, 2012, PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function, Sci. Transl. Med., 4, 10.1126/scitranslmed.3003799
Scott, 2014, GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy, J. Biol. Chem., 289, 2864, 10.1074/jbc.M113.521641
Nezich, 2015, MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J, Cell Biol., 210, 435, 10.1083/jcb.201501002
Quiros, 2015, New roles for mitochondrial proteases in health, ageing and disease, Nat. Rev. Mol. Cell Biol., 16, 345, 10.1038/nrm3984
Karbowski, 2011, Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation, Curr. Opin. Cell Biol., 23, 476, 10.1016/j.ceb.2011.05.007
Yonashiro, 2006, A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics, EMBO J., 25, 3618, 10.1038/sj.emboj.7601249
Yun, 2014, MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin, eLife, 3, e01958, 10.7554/eLife.01958
Kim, 2012, Metabolic labeling reveals proteome dynamics of mouse mitochondria, Mol. Cell. Proteomics, 11, 1586, 10.1074/mcp.M112.021162
Price, 2010, Analysis of proteome dynamics in the mouse brain, Proc. Natl. Acad. Sci. USA, 107, 14508, 10.1073/pnas.1006551107
Vincow, 2013, The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo, Proc. Natl. Acad. Sci. USA, 110, 6400, 10.1073/pnas.1221132110
Yang, 2013, Bit-by-bit autophagic removal of parkin-labelled mitochondria, Nat. Commun, 4, 2428, 10.1038/ncomms3428
Jin, 2013, The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria, Autophagy, 9, 1750, 10.4161/auto.26122
Burman, 2017, Mitochondrial fission facilitates the selective mitophagy of protein aggregates, J. Cell Biol., 216, 3231, 10.1083/jcb.201612106
Burbulla, 2014, Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1, Cell Death Dis., 5, e1180, 10.1038/cddis.2014.103
Rainbolt, 2013, Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation, Cell Metab., 18, 908, 10.1016/j.cmet.2013.11.006
Yamashita, 2016, Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy, J. Cell Biol., 215, 649, 10.1083/jcb.201605093
Soubannier, 2012, A vesicular transport pathway shuttles cargo from mitochondria to lysosomes, Curr. Biol., 22, 135, 10.1016/j.cub.2011.11.057
McLelland, 2014, Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control, EMBO J., 33, 282
McLelland, 2016, Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system, J. Cell Biol., 214, 275, 10.1083/jcb.201603105
Abeliovich, 2013, Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy, Nat. Commun., 4, 2789, 10.1038/ncomms3789
Hughes, 2016, Selective sorting and destruction of mitochondrial membrane proteins in aged yeast, eLife, 5, e13943, 10.7554/eLife.13943
Nargund, 2012, Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation, Science, 337, 587, 10.1126/science.1223560
Benedetti, 2006, Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response, Genetics, 174, 229, 10.1534/genetics.106.061580
Haynes, 2007, ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans, Dev. Cell, 13, 467, 10.1016/j.devcel.2007.07.016
Nargund, 2015, Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt), Mol. Cell, 58, 123, 10.1016/j.molcel.2015.02.008
Munch, 2016, Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation, Nature, 534, 710, 10.1038/nature18302
Martinus, 1996, Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome, Eur. J. Biochem., 240, 98, 10.1111/j.1432-1033.1996.0098h.x
Zhao, 2002, A mitochondrial specific stress response in mammalian cells, EMBO J., 21, 4411, 10.1093/emboj/cdf445
Aldridge, 2007, Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements, PLoS One, 2, e874, 10.1371/journal.pone.0000874
Fiorese, 2016, The transcription factor ATF5 mediates a mammalian mitochondrial UPR, Curr. Biol., 26, 2037, 10.1016/j.cub.2016.06.002
Quiros, 2017, Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals, J. Cell Biol., 216, 2027, 10.1083/jcb.201702058
Wrobel, 2015, Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol, Nature, 524, 485, 10.1038/nature14951
Wang, 2015, A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death, Nature, 524, 481, 10.1038/nature14859
Hamalainen, 2013, Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model, Proc. Natl. Acad. Sci. USA, 110, E3622, 10.1073/pnas.1311660110
Suen, 2010, Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells, Proc. Natl. Acad. Sci. USA, 107, 11835, 10.1073/pnas.0914569107
Houtkooper, 2013, Mitonuclear protein imbalance as a conserved longevity mechanism, Nature, 497, 451, 10.1038/nature12188
Gitschlag, 2016, Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans, Cell Metab., 24, 91, 10.1016/j.cmet.2016.06.008
Lin, 2016, Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response, Nature, 533, 416, 10.1038/nature17989
Valenci, 2015, Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans, Mitochondrion, 20, 64, 10.1016/j.mito.2014.11.001
Trifunovic, 2004, Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature, 429, 417, 10.1038/nature02517
Pickrell, 2015, Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress, Neuron, 87, 371, 10.1016/j.neuron.2015.06.034
Khan, 2014, Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3, EMBO Mol. Med., 6, 721, 10.1002/emmm.201403943
Song, 2017, Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism, Neurobiol. Dis., 100, 30, 10.1016/j.nbd.2016.12.024
Pickrell, 2015, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease, Neuron, 85, 257, 10.1016/j.neuron.2014.12.007
Shin, 2011, PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease, Cell, 144, 689, 10.1016/j.cell.2011.02.010
Dave, 2014, Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease, Neurobiol. Dis., 70, 190, 10.1016/j.nbd.2014.06.009
Sterky, 2011, Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo, Proc. Natl. Acad. Sci. USA, 108, 12937, 10.1073/pnas.1103295108
Ekstrand, 2007, Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons, Proc. Natl. Acad. Sci. USA, 104, 1325, 10.1073/pnas.0605208103
Hernandez, 2013, MitoTimer: a novel tool for monitoring mitochondrial turnover, Autophagy, 9, 1852, 10.4161/auto.26501
Stotland, 2016, alpha-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart, J. Mol. Cell. Cardiol., 90, 53, 10.1016/j.yjmcc.2015.11.032
Katayama, 2011, A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery, Chem. Biol., 18, 1042, 10.1016/j.chembiol.2011.05.013
McWilliams, 2016, mito-QC illuminates mitophagy and mitochondrial architecture in vivo, J. Cell Biol., 214, 333, 10.1083/jcb.201603039
Ito, 2016, Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance, Science, 354, 1156, 10.1126/science.aaf5530