Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases

EBioMedicine - Tập 20 - Trang 27-38 - 2017
Tetsuro Matsuhashi1, Takeya Sato2, Shin-ichiro Kanno3, Takehiro Suzuki4,5, Akihiro Matsuo4, Yuki Oba4, Motoi Kikusato6, Emi Ogasawara7, Tai Kudo8, Kosuke Suzuki4, Osamu Ohara9, Hiroko Shimbo10, Fumika Nanto4, Hiroaki Yamaguchi11, Daisuke Saigusa12, Yasuno Mukaiyama4, Akiko Watabe13, Koichi Kikuchi4, Hisato Shima4, Eikan Mishima4
1Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
2Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
3Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8574, Japan
4Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
5Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan
6Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
7Faculty of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
8Primetech Co. Ltd., Tokyo, 112-0002, Japan
9Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
10Kanagawa Children's Medical Center, Yokohama 232-0066, Japan
11Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
12Department of Medical Megabank, Tohoku University, Sendai 980-8574, Japan
13Division of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan

Tài liệu tham khảo

Amati-Bonneau, 2009, OPA1-associated disorders: phenotypes and pathophysiology, Int. J. Biochem. Cell Biol., 41, 1855, 10.1016/j.biocel.2009.04.012 Arnold, 1998, Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits, EMBO J., 17, 7170, 10.1093/emboj/17.24.7170 Avula, 2014, Treatment of mitochondrial disorders, Curr. Treat. Options Neurol., 16, 292, 10.1007/s11940-014-0292-7 Bornhovd, 2006, Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes, J. Biol. Chem., 281, 13990, 10.1074/jbc.M512334200 D'Aco, 2013, Mitochondrial tRNA(Phe) mutation as a cause of end-stage renal disease in childhood, Pediatr. Nephrol., 28, 515, 10.1007/s00467-012-2354-y Davies, 2011, Macromolecular organization of ATP synthase and complex I in whole mitochondria, Proc. Natl. Acad. Sci. U. S. A., 108, 14121, 10.1073/pnas.1103621108 Davis, 2016, A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases, Neurology, 86, 2010, 10.1212/WNL.0000000000002705 Enns, 2012, Initial experience in the treatment of inherited mitochondrial disease with EPI-743, Mol. Genet. Metab., 105, 91, 10.1016/j.ymgme.2011.10.009 Fujita, 2014, GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases, Mitochondrion, 20C, 34 Giedt, 2012, Mitochondrial dynamics and motility inside living vascular endothelial cells: role of bioenergetics, Ann. Biomed. Eng., 40, 1903, 10.1007/s10439-012-0568-6 Gorman, 2016, Mitochondrial diseases, Nat. Rev. Dis. Primers, 2, 16080, 10.1038/nrdp.2016.80 Greggio, 2017, Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle, Cell Metab., 25, 301, 10.1016/j.cmet.2016.11.004 Habersetzer, 2013, ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology, Int. J. Biochem. Cell Biol., 45, 99, 10.1016/j.biocel.2012.05.017 Hurko, 2013, Drug development for rare mitochondrial disorders, Neurotherapeutics, 10, 286, 10.1007/s13311-013-0179-4 Kanno, 2007, A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses, EMBO J., 26, 2094, 10.1038/sj.emboj.7601663 Koob, 2014, Novel intracellular functions of apolipoproteins: the ApoO protein family as constituents of the Mitofilin/MINOS complex determines cristae morphology in mitochondria, Biol. Chem., 395, 285, 10.1515/hsz-2013-0274 Koopman, 2012, Monogenic mitochondrial disorders, N. Engl. J. Med., 366, 1132, 10.1056/NEJMra1012478 Kumari, 2016, Ubisol-Q10 prevents glutamate-induced cell death by blocking mitochondrial fragmentation and permeability transition pore opening, Int. J. Biol. Sci., 12, 688, 10.7150/ijbs.13589 Lehtonen, 2016, FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders, Neurology, 87, 2290, 10.1212/WNL.0000000000003374 Lenaers, 2012, Dominant optic atrophy, Orphanet. J. Rare Dis., 7, 46, 10.1186/1750-1172-7-46 Ma, 2013, Genetic and biochemical findings in Chinese children with Leigh syndrome, J. Clin. Neurosci., 20, 1591, 10.1016/j.jocn.2013.03.034 Maranzana, 2013, Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I, Antioxid. Redox Signal., 19, 1469, 10.1089/ars.2012.4845 Mitchell, 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 191, 144, 10.1038/191144a0 Mun, 2010, Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology, J. Cell. Physiol., 224, 748, 10.1002/jcp.22177 Nakada, 2001, Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA, Nat. Med., 7, 934, 10.1038/90976 Nakayama, 2017, Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq, Biochem. Biophys. Reports, 9, 146, 10.1016/j.bbrep.2016.12.002 Nuskova, 2015, Mitochondrial ATP synthasome: expression and structural interaction of its components, Biochem. Biophys. Res. Commun., 464, 787, 10.1016/j.bbrc.2015.07.034 Ogata, 2015, Autocrine DNA fragmentation of intra-epithelial lymphocytes (IELs) in mouse small intestine, Cell Tissue Res., 361, 799, 10.1007/s00441-015-2151-6 Paumard, 2002, The ATP synthase is involved in generating mitochondrial cristae morphology, EMBO J., 21, 221, 10.1093/emboj/21.3.221 Pelletier, 2014, Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption, Methods Enzymol., 542, 125, 10.1016/B978-0-12-416618-9.00007-8 Pieczenik, 2007, Mitochondrial dysfunction and molecular pathways of disease, Exp. Mol. Pathol., 83, 84, 10.1016/j.yexmp.2006.09.008 Rabl, 2009, Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g, J. Cell Biol., 185, 1047, 10.1083/jcb.200811099 Rose, 2014, Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort, PLoS One, 9, e85436, 10.1371/journal.pone.0085436 Schapira, 2012, Mitochondrial diseases, Lancet, 379, 1825, 10.1016/S0140-6736(11)61305-6 Shimbo, 2014, A rapid screening with direct sequencing from blood samples for the diagnosis of Leigh syndrome, Mol. Genet. Metab. Rep., 1, 133, 10.1016/j.ymgmr.2014.02.006 Strauss, 2008, Dimer ribbons of ATP synthase shape the inner mitochondrial membrane, EMBO J., 27, 1154, 10.1038/emboj.2008.35 Suomalainen, 2011, FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study, Lancet Neurol., 10, 806, 10.1016/S1474-4422(11)70155-7 Suzuki, 2015, Mitochonic acid 5 (MA-5), a derivative of the plant hormone indole-3-acetic acid, improves survival of fibroblasts from patients with mitochondrial diseases, Tohoku J. Exp. Med., 236, 225, 10.1620/tjem.236.225 Suzuki, 2016, Mitochonic acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage, J. Am. Soc. Nephrol., 27, 1925, 10.1681/ASN.2015060623 Tanigawa, 2012, Two Japanese patients with Leigh syndrome caused by novel SURF1 mutations, Brain Dev., 34, 861, 10.1016/j.braindev.2012.02.007 Uehara, 2014, New MT-ND6 and NDUFA1 mutations in mitochondrial respiratory chain disorders, Ann. Clin. Transl. Neurol., 1, 361, 10.1002/acn3.59 Vafai, 2012, Mitochondrial disorders as windows into an ancient organelle, Nature, 491, 374, 10.1038/nature11707 Yatsuga, 2015, Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders, Ann. Neurol., 78, 814, 10.1002/ana.24506