Mitochondrial toxicity of nrti antiviral drugs: an integrated cellular perspective

Nature Reviews Drug Discovery - Tập 2 Số 10 - Trang 812-822 - 2003
William Lewis1, Brian J. Day2, William C. Copeland3
1Department of Pathology, Emory University, 1639 Pierce Drive, Room 7117, Atlanta, 30322, Georgia, USA
2Department of Medicine, National Jewish Medical & Research Center, 1400 Jackson Street, Goodman Building, Room 715, Denver, 80206, Colorado, USA
3National Institute of Environmental Health Sciences, Laboratory of Molecular Genetics, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnaudo, E. et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337, 508–510 (1991).

Dalakas, M. C. et al. Mitochondrial myopathy caused by long-term zidovudine therapy. N. Engl. J. Med. 322, 1098–1105 (1990). The first report of mitochondrial toxicity from NRTIs with ultrastructural similarities to mitochondrial myopathy.

Lewis, W. et al. Mitochondrial ultrastructural and molecular changes induced by zidovudine in rat hearts. Lab. Invest. 65, 228–236 (1991).

Lewis, W., Gonzalez, B., Chomyn, A. & Papoian, T. Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J. Clin. Invest. 89, 1354–1360 (1992). Reports a link between mtDNA depletion, mtRNA depletion, mitochondrial ultrastructural defects and AZT treatment and myopathy.

Lewis, W. et al. Fialuridine and its metabolites inhibit DNA polymerase γ at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc. Natl Acad. Sci. USA 93, 3592–3597 (1996). Establishes competitive inhibition as operative with the pharmacologically active FIAU metabolites.

Lewis, W. et al. Depletion of mitochondrial DNA, destruction of mitochondria, and accumulation of lipid droplets result from fialuridine treatment in woodchucks (Marmota monax). Lab. Invest. 76, 77–87 (1997).

Lewis, W. et al. Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Lab. Invest. 80, 187–197 (2000).

Lewis, W. et al. Combined antiretroviral therapy causes cardiomyopathy and elevates plasma lactate in transgenic AIDS mice. Lab. Invest. 81, 1527–1536 (2001).

Lewis, W., Simpson, J. F. & Meyer, R. R. Cardiac mitochondrial DNA polymerase-γ is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ. Res. 74, 344–348 (1994). Establishes mixed kinetics of AZT-TP with bovine DNA pol-γ.

Lewis, W., Meyer, R. R., Simpson, J. F., Colacino, J. M. & Perrino, F. W. Mammalian DNA polymerases α, β, γ, δ, and ε incorporate fialuridine (FIAU) monophosphate into DNA and are inhibited competitively by FIAU triphosphate. Biochemistry 33, 14620–14624 (1994).

Lewis, W. & Dalakas, M. C. Mitochondrial toxicity of antiviral drugs. Nature Med. 1, 417–422 (1995). A review that states the first articulation of the DNA pol-γ hypothesis.

Lewis, W., Copeland, W. C. & Day, B. Mitochondrial DNA depletion, oxidative stress and mutation: mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Lab. Invest. 81, 777–790 (2001).

Barile, M., Valenti, D., Passarella, S. & Quagliariello, E. 3′-Azido-3′-deoxythmidine uptake into isolated rat liver mitochondria and impairment of ADP/ATP translocator. Biochem. Pharmacol. 53, 913–920 (1997).

Valenti, D., Barile, M. & Passarella, S. AZT inhibition of the ADP/ATP antiport in isolated rat heart mitochondria. Int. J. Mol. Med. 6, 93–96 (2000).

Lim, S. E. & Copeland, W. C. Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase γ. J. Biol. Chem. 276, 23616–23623 (2001). A kinetic explanation for mtDNA depletion from NRTIs.

Hall, E. T., Yan, J. P., Melancon, P. & Kuchta, R. D. 3′-Azido-3′-deoxythymidine potently inhibits protein glycosylation. A novel mechanism for AZT cytotoxicity. J. Biol. Chem. 269, 14355–1438 (1994).

Hobbs, G. A., Keilbaugh, S. A., Rief, P. M. & Simpson, M. V. Cellular targets of 3′-azido-3′-deoxythymidine: an early (non-delayed) effect on oxidative phosphorylation. Biochem. Pharmacol. 50, 381–390 (1995).

Katz, A. M. Is the failing heart energy depleted? Cardiol. Clin. 16, 633–644, viii (1998).

Sawyer, D. B. & Colucci, W. S. Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited. Circ. Res. 86, 119–120 (2000).

Wallace, D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632 (1992).

Wallace, D. C. Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61, 1175–1212 (1992).

Wardell, T. M. et al. Changes in the human mitochondrial genome after treatment of malignant disease. Mutat. Res. 525, 19–27 (2003).

Mulato, A. S. & Cherrington, J. M. Anti-HIV activity of adefovir (PMEA) and PMPA in combination with antiretroviral compounds: in vitro analyses. Antiviral Res. 36, 91–97 (1997).

Birkus, G. et al. Tenofovir diphosphate is a poor substrate and a weak inhibitor of rat DNA polymerases α, δ, and ε. Antimicrob. Agents Chemother. 46, 1610–1613 (2002).

Birkus, G., Hitchcock, M. J. & Cihlar, T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 46, 716–723 (2002).

Biesecker, G. et al. Evaluation of mitochondrial DNA content and enzyme levels in tenofovir DF-treated rats, rhesus monkeys and woodchucks. Antiviral Res. 58, 217–225 (2003).

Cihlar, T., Birkus, G., Greenwalt, D. E. & Hitchcock, M. J. Tenofovir exhibits low cytotoxicity in various human cell types: comparison with other nucleoside reverse transcriptase inhibitors. Antiviral Res. 54, 37–45 (2002).

Schaaf, B., Aries, S. P., Kramme, E., Steinhoff, J. & Dalhoff, K. Acute renal failure associated with tenofovir treatment in a patient with acquired immunodeficiency syndrome. Clin. Infect. Dis. 37, e41–e43 (2003).

Murphy, M. D., O'Hearn, M. & Chou, S. Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin. Infect. Dis. 36, 1082–1085 (2003).

Creput, C. et al. Renal lesions in HIV-1-positive patient treated with tenofovir. AIDS 17, 935–937 (2003).

Karras, A. et al. Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. Clin. Infect. Dis. 36, 1070–1073 (2003).

Perazella, M. A. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am. J. Med. Sci. 325, 349–362 (2003).

Castillo, A. B., Tarantal, A. F., Watnik, M. R. & Martin, R. B. Tenofovir treatment at 30 mg/kg/day can inhibit cortical bone mineralization in growing rhesus monkeys (Macaca mulatta). J. Orthop. Res. 20, 1185–1189 (2002).

Barile, M., Valenti, D., Quagliariello, E. & Passarella, S. Mitochondria as cell targets of AZT (zidovudine). Gen. Pharmacol. 31, 531–538 (1998).

Brinkman, K. Evidence for mitochondrial toxicity: lactic acidosis as proof of concept. J. HIV Ther. 6, 13–16 (2001).

Brinkman, K., Smeitink, J. A., Romijn, J. A. & Reiss, P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 354, 1112–1115 (1999).

Brinkman, K., ter Hofstede, H. J., Burger, D. M., Smeitink, J. A. & Koopmans, P. P. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 12, 1735–1744 (1998).

Brinkman, K., Vrouenraets, S., Kauffmann, R., Weigel, H. & Frissen, J. Treatment of nucleoside reverse transcriptase inhibitor-induced lactic acidosis. AIDS 14, 2801–2802 (2000).

Casademont, J., Miro, O. & Cardellach, F. Mitochondrial DNA and nucleoside toxicity. N. Engl. J. Med. 347, 216–218 (2002).

Honkoop, P., Scholte, H. R., de Man, R. A. & Schalm, S. W. Mitochondrial injury. Lessons from the fialuridine trial. Drug Saf. 17, 1–7 (1997).

Johnson, A. A. et al. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J. Biol. Chem. 276, 40847–40857 (2001). A biochemical analysis of mitochondrial toxicity.

Kakuda, T. N. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 22, 685–708 (2000).

Kakuda, T. N., Brundage, R. C., Anderson, P. L. & Fletcher, C. V. Nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity as an etiology for lipodystrophy. AIDS 13, 2311–2312 (1999).

Lewis, W. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy. Prog. Cardiovasc. Dis. 45, 305–318 (2003).

Lewis, W. Defective mitochondrial DNA replication and NRTIs: pathophysiological implications in AIDS cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 284, H1–H9 (2003).

Lewis, W. Cardiomyopathy in AIDS: a pathophysiological perspective. Prog. Cardiovasc. Dis. 43, 151–170 (2000).

Moyle, G. Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity. Clin. Ther. 22, 911–936 (2000).

Walker, U. A. Clinical manifestations of mitochondrial toxicity. J. HIV Ther. 6, 17–21 (2001).

Wright, G. E. & Brown, N. C. Deoxyribonucleotide analogs as inhibitors and substrates of DNA polymerases. Pharmacol. Ther. 47, 447–497 (1990). An extensive review of the mechanisms of action and toxicity of nucleoside analogues.

Wallace, K. B. & Starkov, A. A. Mitochondrial targets of drug toxicity. Annu. Rev. Pharmacol. Toxicol. 40, 353–388 (2000).

Arner, E. S. & Eriksson, S. Mammalian deoxyribonucleoside kinases. Pharmacol. Ther. 67, 155–186 (1995).

Eriksson, S., Cederlund, E., Bergman, T., Jornvall, H. & Bohman, C. Characterization of human deoxycytidine kinase. Correlation with cDNA sequences. FEBS Lett. 280, 363–366 (1991).

Eriksson, S., Kierdaszuk, B., Munch-Petersen, B., Oberg, B. & Johansson, N. G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem. Biophys. Res. Commun. 176, 586–592 (1991).

Eriksson, S., Munch-Petersen, B., Kierdaszuk, B. & Arner, E. Expression and substrate specificities of human thymidine kinase 1, thymidine kinase 2 and deoxycytidine kinase. Adv. Exp. Med. Biol. 309B, 239–243 (1991).

Munch-Petersen, B., Cloos, L., Tyrsted, G. & Eriksson, S. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J. Biol. Chem. 266, 9032–9038 (1991). Specificity of NRTIs as substrates for phosphorylation is established.

Mitsuya, H. et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl Acad. Sci. USA 82, 7096–7100 (1985).

Mitsuya, H., Yarchoan, R. & Broder, S. Molecular targets for AIDS therapy. Science 249, 1533–1544 (1990).

Dobrovolsky, V. N., Bucci, T., Heflich, R. H., Desjardins, J. & Richardson, F. C. Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol. Genet. Metab. 78, 1–10 (2003).

Copeland, W. C., Chen, M. S. & Wang, T. S. Human DNA polymerases α and β are able to incorporate anti-HIV deoxynucleotides into DNA. J. Biol. Chem. 267, 21459–21464 (1992). An early report of nuclear DNA polymerase-driven incorporation of NRTIs.

Palmieri, F. Mitochondrial carrier proteins. FEBS Lett. 346, 48–54 (1994).

Dolce, V., Fiermonte, G., Runswick, M. J., Palmieri, F. & Walker, J. E. The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc. Natl Acad. Sci. USA 98, 2284–2288 (2001).

Moraes, C. T. et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 48, 492–501 (1991).

Marin-Garcia, J. & Goldenthal, M. J. Mitochondrial biogenesis defects and neuromuscular disorders. Pediatr. Neurol. 22, 122–129 (2000).

Hirano, M. & Vu, T. H. Defects of intergenomic communication: where do we stand? Brain Pathol. 10, 451–461 (2000).

Vu, T. H. et al. Clinical manifestations of mitochondrial DNA depletion. Neurology 50, 1783–1790 (1998).

McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099–1105 (1995). Results of a tragic clinical trial in which antiviral FIAU was linked to severe organ damage.

Tennant, B. C. et al. Antiviral activity and toxicity of fialuridine in the woodchuck model of hepatitis B virus infection. Hepatology 28, 179–91 (1998).

Taanman, J. W. et al. Molecular mechanisms in mitochondrial DNA depletion syndrome. Hum. Mol. Genet. 6, 935–942 (1997).

Swartz, M. N. Mitochondrial toxicity – new adverse drug effects. N. Engl. J. Med. 333, 1146–1148 (1995). A crystalization of the potential toxicity of NRTIs.

Sinnwell, T. M. et al. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy. J. Clin. Invest. 96, 126–131 (1995).

Saada, A. et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genet. 29, 342–344 (2001).

Kit, S. & Leung, W. C. Submitochondrial localization and characteristics of thymidine kinase molecular forms in parental and kinase-deficient HeLa cells. Biochem. Genet. 11, 231–247 (1974).

Wang, L., Hellman, U. & Eriksson, S. Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA. FEBS Lett. 390, 39–43 (1996).

Petrakis, T. G., Ktistaki, E., Wang, L., Eriksson, S. & Talianidis, I. Cloning and characterization of mouse deoxyguanosine kinase. Evidence for a cytoplasmic isoform. J. Biol. Chem. 274, 24726–24730 (1999).

Mandel, H. et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genet. 29, 337–341 (2001).

Lim, S. E., Longley, M. J. & Copeland, W. C. The mitochondrial p55 accessory subunit of human DNA polymerase γ enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J. Biol. Chem. 274, 38197–38203 (1999).

Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 276, 38555–38562 (2001).

Huang, P., Farquhar, D. & Plunkett, W. Selective action of 3′-azido-3′-deoxythymidine 5′-triphosphate on viral reverse transcriptases and human DNA polymerases. J. Biol. Chem. 265, 11914–11918 (1990).

Eriksson, S., Xu, B. & Clayton, D. A. Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. J. Biol. Chem. 270, 18929–18934 (1995).

Huang, P., Farquhar, D. & Plunkett, W. Selective action of 2′,3′-didehydro-2′,3′-dideoxythymidine triphosphate on human immunodeficiency virus reverse transcriptase and human DNA polymerases. J. Biol. Chem. 267, 2817–2822 (1992).

Kaguni, L. S., Wernette, C. M., Conway, M. C. & Yang-Cashman, P. in Eukaryotic DNA Replication Vol. 6 (eds Kelly, T. & Stillman, B.) 425–432 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

Hart, G. J. et al. Effects of (−)-2′-deoxy-3′-thiacytidine (3TC) 5′-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases α, β, and γ. Antimicrob. Agents Chemother. 36, 1688–1694 (1992).

Parker, W. B. & Cheng, Y. C. Mitochondrial toxicity of NRTI analogs. J. NIH Res. 6, 57–61 (1994).

Nickel, W., Austermann, S., Bialek, G. & Grosse, F. Interactions of azidothymidine triphosphate with the cellular DNA polymerases α, δ, and ε and with DNA primase. J. Biol. Chem. 267, 848–854 (1992).

Martin, J. L., Brown, C. E., Matthews-Davis, N. & Reardon, J. E. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob. Agents Chemother. 38, 2743–2749 (1994).

Matsuda, T. et al. Error rate and specificity of human and murine DNA polymerase η. J. Mol. Biol. 312, 335–346 (2001).

Maga, G. et al. Molecular basis for the enantioselectivity of HIV-1 reverse transcriptase: role of the 3′-hydroxyl group of the L-(β)-ribose in chiral discrimination between D- and L-enantiomers of deoxy- and dideoxy-nucleoside triphosphate analogs. Nucleic Acids Res. 27, 972–978 (1999).

Cao, W., Mayer, A. N. & Barany, F. Stringent and relaxed specificities of TaqI endonuclease: interactions with metal cofactors and DNA sequences. Biochemistry 34, 2276–2283 (1995).

Lim, S. E., Ponamarev, M. V., Longley, M. J. & Copeland, W. C. Structural determinants in human DNA polymerase γ account for mitochondrial toxicity from nucleoside analogs. J. Mol. Biol. 329, 45–57 (2003). Reports that residues in the active site relate to the selectivity of antiviral toxicity to DNA pol-γ.

Simpson, M. V., Chin, C. D., Keilbaugh, S. A., Lin, T. S. & Prusoff, W. H. Studies on the inhibition of mitochondrial DNA replication by 3′-azido-3′-deoxythymidine and other dideoxynucleoside analogs which inhibit HIV-1 replication. Biochem. Pharmacol. 38, 1033–1036 (1989). One of the earliest studies that addresses mtDNA replication defects by NRTIs.

Chen, C. H. & Cheng, Y. C. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. J. Biol. Chem. 264, 11934–11937 (1989). One of the earliest studies that addresses mtDNA replication defects by NRTIs.

Chen, C. H., Vazquez-Padua, M. & Cheng, Y. C. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol. Pharmacol. 39, 625–628 (1991).

Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999). A concise review of mitochondrial genetics and disease.

de la Asuncion, J. G., del Olmo, M. L., Sastre, J., Pallardo, F. V. & Vina, J. Zidovudine (AZT) causes an oxidation of mitochondrial DNA in mouse liver. Hepatology 29, 985–987 (1999).

Szabados, E. et al. Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat. Free Radic. Biol. Med. 26, 309–317 (1999).

Yamaguchi, T., Katoh, I. & Kurata, S. Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. Eur. J. Biochem. 269, 2782–2788 (2002).

Bridges, E. G., LeBoeuf, R. B., Weidner, D. A. & Sommadossi, J. P. Influence of template primary structure on 3′-azido-3′-deoxythymidine triphosphate incorporation into DNA. Antiviral Res. 21, 93–102 (1993).

Bebenek, K., Thomas, D. C., Roberts, J. D., Eckstein, F. & Kunkel, T. A. Effects of 3′-azido-3′-deoxythymidine metabolites on simian virus 40 origin-dependent replication and heteroduplex repair in HeLa cell extracts. Mol. Pharmacol. 43, 57–63 (1993).

Frick, L. W., Nelson, D. J., St Clair, M. H., Furman, P. A. & Krenitsky, T. A. Effects of 3′-azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem Biophys. Res. Commun. 154, 124–129 (1988).

Furman, P. A. et al. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl Acad. Sci. USA 83, 8333–8337 (1986). The original work describing the antiretroviral effects of AZT.

Kunkel, T. A. & Mosbaugh, D. W. Exonucleolytic proofreading by a mammalian DNA polymerase. Biochemistry 28, 988–995 (1989).

Kunkel, T. A. & Soni, A. Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-γ. J. Biol. Chem. 263, 4450–4459 (1988).

Foury, F. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J. Biol. Chem. 264, 20552–20560 (1989).

Zhang, D. et al. Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis. Genomics 69, 151–161 (2000).

Esposito, L. A., Melov, S., Panov, A., Cottrell, B. A. & Wallace, D. C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl Acad. Sci. USA 96, 4820–4825 (1999).

Bialkowska, A. et al. Oxidative DNA damage in fetal tissues after transplacental exposure to 3′-azido-3′-deoxythymidine (AZT). Carcinogenesis 21, 1059–1062 (2000).

Ayers, K. M., Clive, D., Tucker, W. E., Jr., Hajian, G. & de Miranda, P. Nonclinical toxicology studies with zidovudine: genetic toxicity tests and carcinogenicity bioassays in mice and rats. Fundam. Appl. Toxicol. 32, 148–158 (1996).

Agarwal, R. P. & Olivero, O. A. Genotoxicity and mitochondrial damage in human lymphocytic cells chronically exposed to 3′-azido-2′,3′-dideoxythymidine. Mutat. Res. 390, 223–231 (1997).

Gonzalez Cid, M. & Larripa, I. Genotoxic activity of azidothymidine (AZT) in in vitro systems. Mutat. Res. 321, 113–118 (1994).

Meng, Q. et al. Relationships between DNA incorporation, mutant frequency, and loss of heterozygosity at the TK locus in human lymphoblastoid cells exposed to 3′-azido-3′-deoxythymidine. Toxicol. Sci. 54, 322–329 (2000).

Meng, Q., Grosovsky, A. J., Shi, X. & Walker, V. E. Mutagenicity and loss of heterozygosity at the APRT locus in human lymphoblastoid cells exposed to 3′-azido- 3′-deoxythymidine. Mutagenesis 15, 405–410 (2000).

Olivero, O. A. et al. Incorporation of zidovudine into leukocyte DNA from HIV-1-positive adults and pregnant women, and cord blood from infants exposed in utero. AIDS 13, 919–925 (1999).

Sussman, H. E. et al. Genotoxicity of 3′-azido-3′-deoxythymidine in the human lymphoblastoid cell line, TK6: relationships between DNA incorporation, mutant frequency, and spectrum of deletion mutations in HPRT. Mutat. Res. 429, 249–259 (1999).

Martin, A. M. et al. Accumulation of mitochondrial DNA mutations in human immunodeficiency virus-infected patients treated with nucleoside-analogue reverse-transcriptase inhibitors. Am. J. Hum. Genet. 72, 549–560 (2003).

Carrozzo, R. et al. Mutation analysis in 16 patients with mtDNA depletion. Hum. Mutat. 21, 453–454 (2003).

Wang, H. et al. Zidovudine and dideoxynucleosides deplete wild-type mitochondrial DNA levels and increase deleted mitochondrial DNA levels in cultured Kearns-Sayre syndrome fibroblasts. Biochim. Biophys. Acta 1316, 51–59 (1996).

Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

Ropp, P. A. & Copeland, W. C. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase γ. Genomics 36, 449–458 (1996).

Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J. J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genet. 28, 211–212 (2001).

Lamantea, E. et al. Mutations of mitochondrial DNA polymerase γA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann. Neurol. 52, 211–219 (2002).

Carr, A. et al. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet 361, 726–735 (2003).

Cherry, C. L. et al. Exposure to dideoxynucleosides is reflected in lowered mitochondrial DNA in subcutaneous fat. J. Acquir. Immune Defic. Syndr. 30, 271–277 (2002).

Shikuma, C. M. et al. Mitochondrial DNA decrease in subcutaneous adipose tissue of HIV- infected individuals with peripheral lipoatrophy. AIDS 15, 1801–1809 (2001).

Zaera, M. G. et al. Mitochondrial involvement in antiretroviral therapy-related lipodystrophy. AIDS 15, 1643–1651 (2001).

Cossarizza, A., Mussini, C. & Vigano, A. Mitochondria in the pathogenesis of lipodystrophy induced by anti-HIV antiretroviral drugs: actors or bystanders? Bioessays 23, 1070–1080 (2001).

Cossarizza, A. Tests for mitochondrial function and DNA: potentials and pitfalls. Curr. Opin. Infect. Dis. 16, 5–10 (2003).

Betteridge, D. J. What is oxidative stress? Metabolism 49, 3–8 (2000).

Freeman, B. A. & Crapo, J. D. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256, 10986–10992 (1981).

Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716 (1973).

Turrens, J. F., Freeman, B. A. & Crapo, J. D. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217, 411–421 (1982).

Nohl, H., Jordan, W. & Hegner, D. Mitochondrial formation of OH radicals by an ubisemiquinone-dependent reaction an alternative pathway to the iron-catalysed Haber-Weiss cycle. Hoppe-Seylers Z Physiol. Chem. 363, 599–607 (1982).

Taylor, D. E., Ghio, A. J. & Piantadosi, C. A. Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch. Biochem. Biophys. 316, 70–76 (1995).

Tangeras, A., Flatmark, T., Backstrom, D. & Ehrenberg, A. Mitochondrial iron not bound in heme and iron-sulfur centers. Estimation, compartmentation and redox state. Biochim. Biophys. Acta. 589, 162–175 (1980).

Flint, D. H., Tuminello, J. F. & Emptage, M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993).

Graziewicz, M. A., Day, B. J. & Copeland, W. C. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 30, 2817–2824 (2002). The establishment of a cycle of injury to mtDNA via oxidative damage.

Buckley, B. J., Tanswell, A. K. & Freeman, B. A. Liposome-mediated augmentation of catalase in alveolar type II cells protects against H2O2 injury. J. Appl. Physiol. 63, 359–367 (1987).

Asayama, K. et al. Immunolocalization of cellular glutathione peroxidase in adult rat lungs and quantitative analysis after postembedding immunogold labeling. Histochem. Cell Biol. 105, 383–389 (1996).

Marinho, H. S., Antunes, F. & Pinto, R. E. Role of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides. Free Radic. Biol. Med. 22, 871–883 (1997).

Halliwell, B. & Gutteridge, J. M. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89–193 (1985).

de la Asuncion, J. G. et al. AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. J. Clin. Invest. 102, 4–9 (1998). Identification of oxidative injury from AZT in human and murine samples.

Gerschenson, M. et al. Chronic stavudine exposure induces hepatic mitochondrial toxicity in adult Erythrocebus patas monkeys. J. Hum. Virol. 4, 335–342 (2001).

Valenti, D., Atlante, A., Barile, M. & Passarella, S. Inhibition of phosphate transport in rat heart mitochondria by 3′-azido-3′-deoxythymidine due to stimulation of superoxide anion mitochondrial production. Biochem. Pharmacol. 64, 201–206 (2002).

Choi, J. et al. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275, 3693–3698 (2000).

Flores, S. C. et al. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl Acad. Sci. USA 90, 7632–7636 (1993).

Prakash, O. et al. The human immunodeficiency virus type 1 Tat protein potentiates zidovudine-induced cellular toxicity in transgenic mice. Arch. Biochem. Biophys. 343, 173–180 (1997).

Raidel, S. M. et al. Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. Am. J. Physiol. Heart Circ. Physiol. 282, H1672–H1678 (2002).

Kukielka, E., Dicker, E. & Cederbaum, A. I. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch. Biochem. Biophys. 309, 377–386 (1994).

Fernandez-Checa, J. C. et al. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am. J. Physiol. 273, G7–G17 (1997).

Okuda, M. et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122, 366–375 (2002).

Waris, G., Huh, K. W. & Siddiqui, A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-κB via oxidative stress. Mol. Cell. Biol. 21, 7721–7730 (2001).

Pociot, F., Lorenzen, T. & Nerup, J. A manganese superoxide dismutase (SOD2) gene polymorphism in insulin-dependent diabetes mellitus. Dis. Markers 11, 267–274 (1993).

Van Landeghem, G. F., Tabatabaie, P., Kucinskas, V., Saha, N. & Beckman, G. Ethnic variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum. Hered. 49, 190–193 (1999).

Luft, R. The development of mitochondrial medicine. Proc. Natl Acad. Sci. USA 91, 8731–8738 (1994).

Ponamarev, M. V., Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. Active site mutation in DNA polymerase γ associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J. Biol. Chem. 277, 15225–15228 (2002).

Zeviani, M. The expanding spectrum of nuclear gene mutations in mitochondrial disorders. Semin. Cell Dev. Biol. 12, 407–416 (2001).

Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).