Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us.

Free Radical Biology and Medicine - Tập 29 Số 3-4 - Trang 222-230 - 2000
Enrique Cadenas1, Kelvin J.A. Davies2
1Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.
2Ethel Percy Andrus Gerontology Center and Division of Molecular Biology, the University of Southern California, Los Angeles, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boveris, 1982, Production of superoxide radicals and hydrogen peroxide in mitochondria, 15

Forman, 1982, Superoxide radical and hydrogen peroxide in mitochondria, 65

Hauptmann, 1996, The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA, Arch. Biochem. Biophys., 335, 295, 10.1006/abbi.1996.0510

Chance, 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59, 527, 10.1152/physrev.1979.59.3.527

Naqui, 1986, Reactive oxygen intermediates in biochemistry, Ann. Rev. Biochem., 55, 137, 10.1146/annurev.bi.55.070186.001033

Boveris, 1973, The mitochondrial generation of hydrogen peroxide, Biochem. J., 134, 707, 10.1042/bj1340707

Boveris, 1999, The mitochondrial production of oxygen radicals and cellular aging, 1

Poderoso, 1996, Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles, Arch. Biochem. Biophys., 328, 85, 10.1006/abbi.1996.0146

Poderoso, 1998, Nitric oxide regulates oxygen uptake and promotes hydrogen peroxide release by the isolated beating rat heart, Am. J. Physiol. (Cell Physiol.), 43, C112, 10.1152/ajpcell.1998.274.1.C112

Poderoso, 1999, The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol, J. Biol. Chem., 274, 37709, 10.1074/jbc.274.53.37709

Boveris, 1999, Regulation of mitochondrial respiration by ADP, oxygen, and nitric oxide, Methods Enzymol, 301, 188, 10.1016/S0076-6879(99)01082-4

Cadenas, 1999, The reaction of ubiquinols with nitric oxide, 143

Tyler, 1975, Polarographic assay and intracellular distribution of superoxide dismutase in rat liver, Biochem. J., 147, 493, 10.1042/bj1470493

Costa, 1988, Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia, Am. J. Physiol., 255, C123, 10.1152/ajpcell.1988.255.1.C123

Boveris, 1972, The cellular production of hydrogen peroxide, Biochem. J., 128, 617, 10.1042/bj1280617

Boveris, 1975, Mitochondrial production of superoxide anions and its relationship to the antimycin-insensitive respiration, FEBS Lett, 54, 311, 10.1016/0014-5793(75)80928-8

Imlay, 1991, Assay of metabolic superoxide production in Escherichia coli, J. Biol. Chem., 266, 6957, 10.1016/S0021-9258(20)89596-9

Gardner, 1995, Application of the aconitase method to the assay of superoxide in the mitochondrial matrices of cultured cells, 33

Gardner, 1992, Inactivation-reactivation of aconitase in Escherichia coli, J. Biol. Chem., 267, 8757, 10.1016/S0021-9258(19)50343-X

Boveris, 1997, Cellular sources and steady-state levels of reactive oxygen species, 1

Burk, 1978, Peroxide removal by selenium-dependent and selenium-independent glutathione peroxidases in hemoglobin-free perfused rat liver, J. Biol. Chem., 253, 43, 10.1016/S0021-9258(17)38265-0

Stults, 1977, Rat liver glutathione peroxidase, Arch. Biochem. Biophys., 183, 490, 10.1016/0003-9861(77)90384-8

Flohé, 1971, Glutathion-peroxidase, IV, Hoppe-Seyler’s Z. Physiol. Chem., 352, 1401, 10.1515/bchm2.1971.352.2.1401

Flohé, 1982, Glutathione peroxidase brought into focus, 223

Radi, 1991, Detection of catalase in rat heart mitochondria, J. Biol. Chem., 266, 22028, 10.1016/S0021-9258(18)54740-2

Giulivi, 1995, Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxy-desoxyguanosine in mitochondrial DNA, Arch. Biochem. Biophys., 316, 909, 10.1006/abbi.1995.1122

Fhan, 1992, The oxidant stress hypothesis in Parkinson’s disease, Ann. Neurol., 32, 804, 10.1002/ana.410320616

Cohen, 1983, The pathobiology of Parkinson’s disease, J. Neural Transm. Suppl., 19, 89

Richter, 1988, Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA, 85, 6465, 10.1073/pnas.85.17.6465

Richter, 1995, Oxidants in mitochondria, Biochim. Biophys. Acta, 1271, 67, 10.1016/0925-4439(95)00012-S

Adachi, 1995, Improvements in the analytical method for 8-hydroxydeoxyguanosine in nuclear DNA, Carcinogenesis, 16, 253, 10.1093/carcin/16.2.253

Ames, 1989, Endogenous oxidative DNA damage, aging, and cancer, Free Radic. Res. Commun., 7, 121, 10.3109/10715768909087933

Ames, 1995, Mitochondrial decay in aging, Biochim. Biophys. Acta, 1271, 165, 10.1016/0925-4439(95)00024-X

Giulivi, 1998, The role of mitochondrial glutathione in DNA base oxidation, Biochim. Biophys. Acta, 1366, 265, 10.1016/S0005-2728(98)00125-X

Devasagayam, 1991, Singlet oxygen induced single-strand breaks in plasmid pBR322 DNA, Biochim. Biophys. Acta, 1088, 409, 10.1016/0167-4781(91)90133-7

Stoewe, 1987, Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide, Free Radic. Biol. Med., 3, 97, 10.1016/S0891-5849(87)80003-5

Pezzano, 1980, Structure of binary complexes of mono- and polynucleotides with metal ions of the first transition group, Chem. Rev., 80, 365, 10.1021/cr60327a001

Davies, 1999, The broad spectrum of responses to oxidants in proliferating cells, IUBMB Life, 48, 41, 10.1080/713803463

Crawford, 1997, Down-regulation of mammalian mitochondrial RNA’s during oxidative stress, Free Radic. Biol. Med., 22, 551, 10.1016/S0891-5849(96)00380-2

Crawford, 1997, 16S mitochondrial ribosomal RNA degradation is associated with apoptosis, Free Radic. Biol. Med., 22, 1295, 10.1016/S0891-5849(96)00544-8

Crawford, 1998, Oxidative stress causes a general, calcium dependent degradation of mitochondrial polynucleotides, Free Radic. Biol. Med., 25, 1106, 10.1016/S0891-5849(98)00143-9

Abramova, 2000, Polynucleotide degradation during early stage response to oxidative stress is specific to mitochondria, Free Radic. Biol. Med., 28, 281, 10.1016/S0891-5849(99)00239-7

Zhang, 1990, The oxidative inactivation of mitochondrial electron transport chain components and ATPase, J. Biol. Chem., 265, 16330, 10.1016/S0021-9258(17)46227-2

Marcillat, 1989, Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin, Biochem. J., 259, 181, 10.1042/bj2590181

Grune, 1998, Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome, J. Biol. Chem., 273, 10857, 10.1074/jbc.273.18.10857

Davies, 1995, Oxidative stress, Biochem. Soc. Symp., 61, 1, 10.1042/bss0610001

Pacifici, 1991, Protein, lipid, and DNA repair systems in oxidative stress, Gerontology, 37, 166, 10.1159/000213257

Grune, 1997, Degradation of oxidized proteins in mammalian cells, FASEB J, 11, 526, 10.1096/fasebj.11.7.9212076

Ullrich, 1998, Influence of DNA binding on the degradation of oxidized histones by the 20S proteasome, Arch. Biochem. Biophys., 362, 211, 10.1006/abbi.1998.1031

Ullrich, 1999, Poly-ADP-ribose-polymerase activates nuclear proteasome to degrade oxidatively damaged histones, Proc. Natl. Acad. Sci. USA, 96, 6223, 10.1073/pnas.96.11.6223

Sitte, 2000, Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts, FASEB J, 14, 1490, 10.1096/fj.14.11.1490

Davies, 1988, Degradation of oxidatively denatured proteins in Escherichia coli, Free Radic. Biol. Med., 5, 215, 10.1016/0891-5849(88)90015-9

Davies, 1988, Oxidatively denatured proteins are degraded by an ATP-independent pathway in Escherichia coli, Free Radic. Biol. Med., 5, 225, 10.1016/0891-5849(88)90016-0

Marcillat, 1988, Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins, Biochem. J., 254, 677, 10.1042/bj2540677

Davies, K. J. A. Proteolytic systems as secondary antioxidant defenses. In: Chow, C. K., ed. Cellular antioxidant defense mechanisms, Vol. II. Boca Raton: CRC Press; 1988:25–67.

Davies, 1988, Possible importance of proteolytic systems as secondary antioxidant defenses during ischemia-reperfusion injury, 169

Davies, 1983, Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin, FEBS Lett, 153, 227, 10.1016/0014-5793(83)80153-7

Doroshow, 1983, Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4′-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin, Biochem. Pharmacol., 32, 2935, 10.1016/0006-2952(83)90399-4

Davies, 1986, Redox cycling of anthracyclines by cardiac mitochondria, J. Biol. Chem., 261, 3060, 10.1016/S0021-9258(17)35746-0

Doroshow, 1986, A. Redox cycling of anthracyclines by cardiac mitochondria: II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical, J. Biol. Chem., 261, 3068, 10.1016/S0021-9258(17)35747-2

Davies, 1982, Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun., 107, 1198, 10.1016/S0006-291X(82)80124-1

Davies, 1982, Ubisemiquinone radicals in liver, Biochem. Biophys. Res. Commun., 107, 1292, 10.1016/S0006-291X(82)80138-1