Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kiểm soát Mitochondria của Giấc Ngủ
Tóm tắt
Chức năng của giấc ngủ vẫn là một trong những bí ẩn lớn nhất của sinh học. Giải pháp cho vấn đề này có khả năng đến từ việc hiểu rõ hơn về sự cân bằng giấc ngủ, đặc biệt là các quá trình tế bào và phân tử cảm nhận nhu cầu ngủ và giải quyết nợ ngủ. Tại đây, chúng tôi nhấn mạnh những công trình nghiên cứu gần đây ở ruồi giấm cho thấy rằng những thay đổi trong trạng thái redox của mitochondria của các thần kinh thúc đẩy giấc ngủ là trung tâm của một cơ chế điều chỉnh giấc ngủ theo điều hòa nội môi. Bởi vì chức năng của các hành vi được điều chỉnh theo điều hòa nội môi thường liên quan đến biến số được điều chỉnh chính nó, những phát hiện này củng cố giả thuyết rằng giấc ngủ phục vụ một chức năng trao đổi chất.
Từ khóa
#Sleep #Sleep homeostasis #Sleep need #Mitochondria #ROS #Reactive oxygen species #Redox state #Metabolism #Excitability #Drosophila #OXPHOS #Oxidative phosphorylationTài liệu tham khảo
1 S.S. Campbell I. Tobler Animal sleep: a review of sleep duration across phylogeny Neurosci Biobehav Rev 8 1984 269 300 Campbell SS, Tobler I: Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 1984, 8:269-300.
2 R.C. Anafi M.S. Kayser D.M. Raizen Exploring phylogeny to find the function of sleep Nat Rev Neurosci 20 2019 109 116 Anafi RC, Kayser MS, Raizen DM: Exploring phylogeny to find the function of sleep. Nat Rev Neurosci 2019, 20:109-116.
3 R.D. Nath C.N. Bedbrook M.J. Abrams T. Basinger J.S. Bois D.A. Prober The jellyfish Cassiopea exhibits a sleep-like state Curr Biol 27 2017 2984 2990 e2983 Nath RD, Bedbrook CN, Abrams MJ, Basinger T, Bois JS, Prober DA, Sternberg PW, Gradinaru V, Goentoro L: The Jellyfish Cassiopea Exhibits a Sleep-like State. Curr Biol 2017, 27:2984-2990 e2983.
4 J.A. Hobson Sleep is of the brain, by the brain and for the brain Nature 437 2005 1254 1256 Hobson JA: Sleep is of the brain, by the brain and for the brain. Nature 2005, 437:1254-1256.
5 W.R. Hess The autonomic nervous system Lancet 220 1932 1259 1261 Hess WR: The autonomic nervous system. The Lancet 1932, 220:1259-1261.
6 A. Borbely The two-process model of sleep regulation: beginnings and outlook J Sleep Res 31 2022 e13598 Borbely A: The two-process model of sleep regulation: Beginnings and outlook. J Sleep Res 2022, 31:e13598.
7 A.A. Borbely A two process model of sleep regulation Hum Neurobiol 1 1982 195 204 Borbely AA: A two process model of sleep regulation. Hum Neurobiol 1982, 1:195-204.
8 A.A. Borbely S. Daan A. Wirz-Justice T. Deboer The two-process model of sleep regulation: a reappraisal J Sleep Res 25 2016 131 143 Borbely AA, Daan S, Wirz-Justice A, Deboer T: The two-process model of sleep regulation: a reappraisal. J Sleep Res 2016, 25:131-143.
9 B.P. Tu S.L. McKnight Metabolic cycles as an underlying basis of biological oscillations Nat Rev Mol Cell Biol 7 2006 696 701 Tu BP, McKnight SL: Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 2006, 7:696-701.
10 J. Bass J.S. Takahashi Circadian integration of metabolism and energetics Science 330 2010 1349 1354 Bass J, Takahashi JS: Circadian integration of metabolism and energetics. Science 2010, 330:1349-1354.
11 J. Rutter M. Reick S.L. McKnight Metabolism and the control of circadian rhythms Annu Rev Biochem 71 2002 307 331 Rutter J, Reick M, McKnight SL: Metabolism and the control of circadian rhythms. Annu Rev Biochem 2002, 71:307-331.
12 D.A. Beihl A.D. Liese S.M. Haffner Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort Ann Epidemiol 19 2009 351 357 Beihl DA, Liese AD, Haffner SM: Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol 2009, 19:351-357.
13 S. Taheri L. Lin D. Austin T. Young E. Mignot Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index PLoS Med 1 2004 e62 Taheri S, Lin L, Austin D, Young T, Mignot E: Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 2004, 1:e62.
14 M.A. Grandner N.J. Jackson V.M. Pak P.R. Gehrman Sleep disturbance is associated with cardiovascular and metabolic disorders J Sleep Res 21 2012 427 433 Grandner MA, Jackson NJ, Pak VM, Gehrman PR: Sleep disturbance is associated with cardiovascular and metabolic disorders. J Sleep Res 2012, 21:427-433.
15 M.E. Yurgel P. Masek J. DiAngelo A.C. Keene Genetic dissection of sleep-metabolism interactions in the fruit fly J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201 2015 869 877 Yurgel ME, Masek P, DiAngelo J, Keene AC: Genetic dissection of sleep-metabolism interactions in the fruit fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015, 201:869-877.
16 A. Kempf S.M. Song C.B. Talbot G. Miesenbock A potassium channel beta-subunit couples mitochondrial electron transport to sleep Nature 568 2019 230 234 Kempf A, Song SM, Talbot CB, Miesenbock G: A potassium channel beta-subunit couples mitochondrial electron transport to sleep. Nature 2019, 568:230-234.
∗∗17 V. Mariano A.K. Kanellopoulos G. Aiello A.C. Lo E. Legius T. Achsel SREBP modulates the NADP(+)/NADPH cycle to control night sleep in Drosophila Nat Commun 14 2023 763 Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C: SREBP modulates the NADP(+)/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023, 14:763. The authors show that the sleep defects observed in Drosophila mutants for CYFIp1, a gene linked to autism and schizophrenia, are caused by an imbalance of the NADP+/NADPH ratio, which increases in wild-type flies as a function of sleep pressure.
18 G.S. Shadel T.L. Horvath Mitochondrial ROS signaling in organismal homeostasis Cell 163 2015 560 569 Shadel GS, Horvath TL: Mitochondrial ROS signaling in organismal homeostasis. Cell 2015, 163:560-569.
19 E. Hebert-Chatelain T. Desprez R. Serrat L. Bellocchio E. Soria-Gomez A. Busquets-Garcia A cannabinoid link between mitochondria and memory Nature 539 2016 555 559 Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Pagano Zottola AC, Delamarre A, Cannich A, Vincent P, et al.: A cannabinoid link between mitochondria and memory. Nature 2016, 539:555-559.
20 C. Vicente-Gutierrez N. Bonora V. Bobo-Jimenez D. Jimenez-Blasco I. Lopez-Fabuel E. Fernandez Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour Nat Metab 1 2019 201 211 Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, Josephine C, Bonvento G, Enriquez JA, Almeida A, et al.: Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 2019, 1:201-211.
∗∗21 D. Jimenez-Blasco A. Busquets-Garcia E. Hebert-Chatelain R. Serrat C. Vicente-Gutierrez C. Ioannidou Glucose metabolism links astroglial mitochondria to cannabinoid effects Nature 583 2020 603 608 Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gomez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, et al.: Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 2020, 583:603-608. The authors show that the mtCB1-mediated reduction in reactive oxygen species in astrocytes can cause neuronal redox stress in neurons, which, in turn, triggers social deficits at the behavioral level.
∗22 A.K. Kanellopoulos V. Mariano M. Spinazzi Y.J. Woo C. McLean U. Pech Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits Cell 180 2020 1178 1197 e1120 Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, et al.: Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell 2020, 180:1178-1197 e1120. The authors show that the social defects observed in Drosophila mutants for CYFIp1, a gene linked to autism and schizophrenia, are caused by Aralar-mediated GABA uptake into mitochondria.
∗23 M.P. Murphy H. Bayir V. Belousov C.J. Chang K.J.A. Davies M.J. Davies Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo Nat Metab 4 2022 651 662 Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, et al.: Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022, 4:651-662. The authors summarize the advantages and disadvantages of various methods currently used to measure reactive oxygen species in cells and tissue.
24 B.A. Stahl M.E. Slocumb H. Chaitin J.R. DiAngelo A.C. Keene Sleep-dependent modulation of metabolic rate in Drosophila Sleep 40 2017 Stahl BA, Slocumb ME, Chaitin H, DiAngelo JR, Keene AC: Sleep-Dependent Modulation of Metabolic Rate in Drosophila. Sleep 2017, 40.
25 S. Sharma M. Kavuru Sleep and metabolism: an overview Int J Endocrinol 2010 2010 Sharma S, Kavuru M: Sleep and metabolism: an overview. Int J Endocrinol 2010, 2010.
26 C. Cirelli Cellular consequences of sleep deprivation in the brain Sleep Med Rev 10 2006 307 321 Cirelli C: Cellular consequences of sleep deprivation in the brain. Sleep Med Rev 2006, 10:307-321.
27 R.P. Barf G. Van Dijk A.J. Scheurink K. Hoffmann A. Novati H.J. Hulshof Metabolic consequences of chronic sleep restriction in rats: changes in body weight regulation and energy expenditure Physiol Behav 107 2012 322 328 Barf RP, Van Dijk G, Scheurink AJ, Hoffmann K, Novati A, Hulshof HJ, Fuchs E, Meerlo P: Metabolic consequences of chronic sleep restriction in rats: changes in body weight regulation and energy expenditure. Physiol Behav 2012, 107:322-328.
28 A.M. Caron R. Stephenson Energy expenditure is affected by rate of accumulation of sleep deficit in rats Sleep 33 2010 1226 1235 Caron AM, Stephenson R: Energy expenditure is affected by rate of accumulation of sleep deficit in rats. Sleep 2010, 33:1226-1235.
29 C.M. Jung E.L. Melanson E.J. Frydendall L. Perreault R.H. Eckel K.P. Wright Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans J Physiol 589 2011 235 244 Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP: Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 2011, 589:235-244.
30 E. Reimund The free radical flux theory of sleep Med Hypotheses 43 1994 231 233 Reimund E: The free radical flux theory of sleep. Med Hypotheses 1994, 43:231-233.
31 V.M. Hill R.M. O'Connor G.B. Sissoko I.S. Irobunda S. Leong J.C. Canman A bidirectional relationship between sleep and oxidative stress in Drosophila PLoS Biol 16 2018 e2005206 Hill VM, O'Connor RM, Sissoko GB, Irobunda IS, Leong S, Canman JC, Stavropoulos N, Shirasu-Hiza M: A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol 2018, 16:e2005206.
32 M. Gulec H. Ozkol Y. Selvi Y. Tuluce A. Aydin L. Besiroglu Oxidative stress in patients with primary insomnia Prog Neuro-Psychopharmacol Biol Psychiatry 37 2012 247 251 Gulec M, Ozkol H, Selvi Y, Tuluce Y, Aydin A, Besiroglu L, Ozdemir PG: Oxidative stress in patients with primary insomnia. Prog Neuropsychopharmacol Biol Psychiatry 2012, 37:247-251.
33 R.H. Silva V.C. Abilio A.L. Takatsu S.R. Kameda C. Grassl A.B. Chehin Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice Neuropharmacology 46 2004 895 903 Silva RH, Abilio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, Medrano WA, Calzavara MB, Registro S, Andersen ML, et al.: Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 2004, 46:895-903.
34 A.M. Lima V.M. de Bruin E.R. Rios P.F. de Bruin Differential effects of paradoxical sleep deprivation on memory and oxidative stress Naunyn-Schmiedeberg’s Arch Pharmacol 387 2014 399 406 Lima AM, de Bruin VM, Rios ER, de Bruin PF: Differential effects of paradoxical sleep deprivation on memory and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2014, 387:399-406.
35 M.L. Andersen D.A. Ribeiro C.T. Bergamaschi T.A. Alvarenga A. Silva A. Zager Distinct effects of acute and chronic sleep loss on DNA damage in rats Prog Neuro-Psychopharmacol Biol Psychiatry 33 2009 562 567 Andersen ML, Ribeiro DA, Bergamaschi CT, Alvarenga TA, Silva A, Zager A, Campos RR, Tufik S: Distinct effects of acute and chronic sleep loss on DNA damage in rats. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33:562-567.
36 C. Cirelli P.J. Shaw A. Rechtschaffen G. Tononi No evidence of brain cell degeneration after long-term sleep deprivation in rats Brain Res 840 1999 184 193 Cirelli C, Shaw PJ, Rechtschaffen A, Tononi G: No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res 1999, 840:184-193.
37 A. Gopalakrishnan L.L. Ji C. Cirelli Sleep deprivation and cellular responses to oxidative stress Sleep 27 2004 27 35 Gopalakrishnan A, Ji LL, Cirelli C: Sleep deprivation and cellular responses to oxidative stress. Sleep 2004, 27:27-35.
38 V. D'Almeida D.C. Hipolide L.A. Azzalis L.L. Lobo V.B. Junqueira S. Tufik Absence of oxidative stress following paradoxical sleep deprivation in rats Neurosci Lett 235 1997 25 28 D'Almeida V, Hipolide DC, Azzalis LA, Lobo LL, Junqueira VB, Tufik S: Absence of oxidative stress following paradoxical sleep deprivation in rats. Neurosci Lett 1997, 235:25-28.
∗∗39 A. Vaccaro Y. Kaplan Dor K. Nambara E.A. Pollina C. Lin M.E. Greenberg Sleep loss can cause death through accumulation of reactive oxygen species in the gut Cell 181 2020 1307 1328 e1315 Vaccaro A, Kaplan Dor Y, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D: Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181:1307-1328 e1315. The authors show that chronic sleep deprivation leads to organismal death through an increase in gut reactive oxygen species.
40 S. Papadia F.X. Soriano F. Leveille M.A. Martel K.A. Dakin H.H. Hansen Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses Nat Neurosci 11 2008 476 487 Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, et al.: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 2008, 11:476-487.
41 P.S. Baxter G.E. Hardingham Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes Free Radic Biol Med 100 2016 147 152 Baxter PS, Hardingham GE: Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes. Free Radic Biol Med 2016, 100:147-152.
42 C.A. Everson C.J. Henchen A. Szabo N. Hogg Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats Sleep 37 2014 1929 1940 Everson CA, Henchen CJ, Szabo A, Hogg N: Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 2014, 37:1929-1940.
43 J.M. Donlea D. Pimentel G. Miesenbock Neuronal machinery of sleep homeostasis in Drosophila Neuron 81 2014 1442 Donlea JM, Pimentel D, Miesenbock G: Neuronal Machinery of Sleep Homeostasis in Drosophila. Neuron 2014, 81:1442.
44 K. Davie J. Janssens D. Koldere M. De Waegeneer U. Pech L. Kreft A single-cell transcriptome atlas of the aging Drosophila brain Cell 174 2018 982 998 e920 Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft L, Aibar S, Makhzami S, Christiaens V, Bravo Gonzalez-Blas C, et al.: A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 2018, 174:982-998 e920.
45 M.P. Murphy How mitochondria produce reactive oxygen species Biochem J 417 2009 1 13 Murphy MP: How mitochondria produce reactive oxygen species. Biochem J 2009, 417:1-13.
46 M. Ikeda M. Ikeda-Sagara T. Okada P. Clement Y. Urade T. Nagai Brain oxidation is an initial process in sleep induction Neuroscience 130 2005 1029 1040 Ikeda M, Ikeda-Sagara M, Okada T, Clement P, Urade Y, Nagai T, Sugiyama T, Yoshioka T, Honda K, Inoue S: Brain oxidation is an initial process in sleep induction. Neuroscience 2005, 130:1029-1040.
47 M.A. Alam S. Kumar D. McGinty M.N. Alam R. Szymusiak Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep J Neurophysiol 111 2014 287 299 Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R: Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014, 111:287-299.
48 R. Szymusiak N. Alam T.L. Steininger D. McGinty Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats Brain Res 803 1998 178 188 Szymusiak R, Alam N, Steininger TL, McGinty D: Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 1998, 803:178-188.
49 J.E. Sherin P.J. Shiromani R.W. McCarley C.B. Saper Activation of ventrolateral preoptic neurons during sleep Science 271 1996 216 219 Sherin JE, Shiromani PJ, McCarley RW, Saper CB: Activation of ventrolateral preoptic neurons during sleep. Science 1996, 271:216-219.
50 D. Kroeger G. Absi C. Gagliardi S.S. Bandaru J.C. Madara L.L. Ferrari Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice Nat Commun 9 2018 4129 Kroeger D, Absi G, Gagliardi C, Bandaru SS, Madara JC, Ferrari LL, Arrigoni E, Munzberg H, Scammell TE, Saper CB, et al.: Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat Commun 2018, 9:4129.
51 E.C. Harding X. Yu A. Miao N. Andrews Y. Ma Z. Ye A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus Curr Biol 28 2018 2263 2273 e2264 Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, et al.: A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Curr Biol 2018, 28:2263-2273 e2264.
52 A.Y. Andreyev Y.E. Kushnareva A.A. Starkov Mitochondrial metabolism of reactive oxygen species Biochemistry (Mosc) 70 2005 200 214 Andreyev AY, Kushnareva YE, Starkov AA: Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 2005, 70:200-214.
53 M.M. Shchepinova A.G. Cairns T.A. Prime A. Logan A.M. James A.R. Hall MitoNeoD: a mitochondria-targeted superoxide probe Cell Chem Biol 24 2017 1285 1298 e1212 Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, et al.: MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem Biol 2017, 24:1285-1298 e1212.
54 M.A. Lobas R. Tao J. Nagai M.T. Kronschlager P.M. Borden J.S. Marvin A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP Nat Commun 10 2019 711 Lobas MA, Tao R, Nagai J, Kronschlager MT, Borden PM, Marvin JS, Looger LL, Khakh BS: A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun 2019, 10:711.
55 M. Tantama J.R. Martinez-Francois R. Mongeon G. Yellen Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio Nat Commun 4 2013 2550 Tantama M, Martinez-Francois JR, Mongeon R, Yellen G: Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat Commun 2013, 4:2550.
56 M. Tantama Y.P. Hung G. Yellen Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor J Am Chem Soc 133 2011 10034 10037 Tantama M, Hung YP, Yellen G: Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 2011, 133:10034-10037.
57 Y. Zhao Q. Hu F. Cheng N. Su A. Wang Y. Zou SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents Cell Metabol 21 2015 777 789 Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, Hu H, Chen X, Zhou HM, Huang X, et al.: SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metab 2015, 21:777-789.
58 S.C. Albrecht A.G. Barata J. Grosshans A.A. Teleman T.P. Dick In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis Cell Metabol 14 2011 819 829 Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP: In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 2011, 14:819-829.