Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. Fiskum, B. Polster, A. Starkov, et al., Role of mitochondria in neural cell fate, in: Restroative Neurology and Neuroscience, Special Section Abstracts of the Internation Conference on “Cellular Signaling in Neuroprotection Plasticity”, vol. 20 (issue 1/2), 2002, p. 62.
Blomgren, 2003, Mitochondria and ischemic reperfusion damage in the adult and in the developing brain, Biochem. Biophys. Res. Commun., 304, 551, 10.1016/S0006-291X(03)00628-4
Sims, 2002, Mitochondrial contributions to tissue damage in stroke, Neurochem. Int., 40, 511, 10.1016/S0197-0186(01)00122-X
Friberg, 2002, Mitochondrial permeability transition in acute neurodegeneration, Biochimie, 84, 241, 10.1016/S0300-9084(02)01381-0
L. Schild, J. Huppelsberg, S. Kahlert, G. Keilhoff, G. Reiser, Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/reoxygenation for functional breakdown and morphological desintegration, J. Biol. Chem. 278 (2003) 25454–25460.
Puka-Sundvall, 2000, Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia–ischemia in immature rats, Brain. Res. Dev. Brain Res., 125, 31, 10.1016/S0165-3806(00)00110-3
Abo-Hashema, 1999, Liver mitochondria, confirmed as intact by complete suppression of succinate uptake and oxidation, possess a carnitine palmitoyltransferase I that is totally inhibited by malonyl CoA, Biochem. Biophys. Res. Commun., 258, 778, 10.1006/bbrc.1999.0542
Silver, 1992, Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia, J. Cereb. Blood Flow Metab., 12, 759, 10.1038/jcbfm.1992.107
Dux, 1987, Calcium in the mitochondria following brief ischemia of gerbil brain, Neurosci. Lett., 78, 295, 10.1016/0304-3940(87)90376-4
Zaidan, 1994, The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat, J. Neurochem., 63, 1812, 10.1046/j.1471-4159.1994.63051812.x
Sims, 1987, Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat, J. Neurochem., 49, 1367, 10.1111/j.1471-4159.1987.tb01001.x
Verweij, 2000, Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose–response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury, J. Neurosurg., 93, 829, 10.3171/jns.2000.93.5.0829
Kudo, 2001, Effects of volatile anesthetics on N-methyl-d-aspartate excitotoxicity in primary rat neuronal–glial cultures, Anesthesiology, 95, 756, 10.1097/00000542-200109000-00031
Rosenthal, 1987, Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine, J. Cereb. Blood Flow Metab., 7, 752, 10.1038/jcbfm.1987.130
Wingrave, 2003, Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats, J. Neurosci. Res., 73, 95, 10.1002/jnr.10607
Nakahara, 1992, Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain, J. Neurosurg., 76, 244, 10.3171/jns.1992.76.2.0244
Gilboe, 1991, Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists, J. Neurochem., 56, 311, 10.1111/j.1471-4159.1991.tb02597.x
Wagner, 1990, Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia, J. Neurol. Sci., 100, 142, 10.1016/0022-510X(90)90025-I
Almeida, 1995, Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain, J. Neurochem., 65, 1698, 10.1046/j.1471-4159.1995.65041698.x
Bernardi, 1999, Mitochondrial transport of cations: channels exchangers and permeability transition, Physiol. Rev., 79, 1127, 10.1152/physrev.1999.79.4.1127
Siesjo, 1999, Role and mechanisms of secondary mitochondrial failure, Acta Neurochir. Suppl. (Wien), 73, 7
Martin, 1998, Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis, Brain Res. Bull., 46, 281, 10.1016/S0361-9230(98)00024-0
Martin, 2000, Apoptosis and necrosis occur in separate neuronal populations in hippocampus and cerebellum after ischemia and are associated with differential alterations in metabotropic glutamate receptor signaling pathways, J. Cereb. Blood Flow Metab., 20, 153, 10.1097/00004647-200001000-00020
Northington, 2001, Early neurodegeneration after hypoxia–ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis, Neurobiol. Dis., 8, 207, 10.1006/nbdi.2000.0371
Hou, 2002, Molecular mechanisms of cerebral ischemia-induced neuronal death, Int. Rev. Cytol., 221, 93, 10.1016/S0074-7696(02)21011-6
Dewar, 2003, Oligodendrocytes and ischemic brain injury, J. Cereb. Blood Flow Metab., 23, 263, 10.1097/01.WCB.0000053472.41007.F9
Rabuffetti, 2000, Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines, J. Neurosci., 20, 4398, 10.1523/JNEUROSCI.20-12-04398.2000
Fink, 1998, Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation, J. Cereb. Blood Flow Metab., 18, 1071, 10.1097/00004647-199810000-00003
Kobayashi, 2003, Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury, Brain Res., 960, 62, 10.1016/S0006-8993(02)03767-8
Li, 2000, Cyclosporin A enhances survival, ameliorates brain damage, and prevents secondary mitochondrial dysfunction after a 30-minute period of transient cerebral ischemia, Exp. Neurol., 165, 153, 10.1006/exnr.2000.7459
Matsumoto, 1999, Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion, J. Cereb. Blood Flow Metab., 19, 736, 10.1097/00004647-199907000-00002
Alessandri, 2002, Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats, J. Neurotrauma, 19, 829, 10.1089/08977150260190429
Sullivan, 2000, Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury, Exp. Neurol., 161, 631, 10.1006/exnr.1999.7282
Cao, 2002, In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis, J. Neurosci., 22, 5423, 10.1523/JNEUROSCI.22-13-05423.2002
Dietz, 2002, Inhibition of neuronal apoptosis in vitro and in vivo using TAT-mediated protein transduction, Mol. Cell Neurosci., 21, 29, 10.1006/mcne.2002.1165
Kilic, 2002, Intravenous TAT-Bcl-Xl is protective after middle cerebral artery occlusion in mice, Ann. Neurol., 52, 617, 10.1002/ana.10356
Asoh, 2002, Protection against ischemic brain injury by protein therapeutics, Proc. Natl. Acad. Sci. U.S.A., 99, 17107, 10.1073/pnas.262460299
Polster, 2001, Bh3 death domain peptide induces cell type-selective mitochondrial outer membrane permeability, J. Biol. Chem., 276, 37887, 10.1074/jbc.M104552200
Kowaltowski, 2000, Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides, Cell Death Differ., 7, 903, 10.1038/sj.cdd.4400722
Sattler, 2001, Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death, Mol. Neurobiol., 24, 107, 10.1385/MN:24:1-3:107
Choi, 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci., 7, 369, 10.1523/JNEUROSCI.07-02-00369.1987
Arundine, 2003, Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity, Cell Calcium, 34, 325, 10.1016/S0143-4160(03)00141-6
Manev, 1989, Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death, Mol. Pharmacol., 36, 106
Randall, 1992, Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons, J. Neurosci., 12, 1882, 10.1523/JNEUROSCI.12-05-01882.1992
Tymianski, 1993, Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons, J. Neurosci., 13, 2085, 10.1523/JNEUROSCI.13-05-02085.1993
Tymianski, 1993, Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators, Brain Res., 607, 319, 10.1016/0006-8993(93)91523-U
Witt, 1994, Complex correlation between excitatory amino acid-induced increase in the intracellular Ca2+ concentration and subsequent loss of neuronal function in individual neocortical neurons in culture, Proc. Natl. Acad. Sci. U.S.A., 91, 12303, 10.1073/pnas.91.25.12303
Limbrick, 1995, Inability to restore resting intracellular calcium levels as an early indicator of delayed neuronal cell death, Brain Res., 690, 145, 10.1016/0006-8993(95)00552-2
Nicholls, 2000, Mitochondria and neuronal survival, Physiol. Rev., 80, 315, 10.1152/physrev.2000.80.1.315
Nicholls, 2003, Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells, Cell Calcium, 34, 407, 10.1016/S0143-4160(03)00144-1
Peng, 1998, Privileged access to mitochondria of calcium influx through N-methyl-d-aspartate receptors, Mol. Pharmacol., 53, 974
Pivovarova, 1999, Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics, J. Neurosci., 19, 6372, 10.1523/JNEUROSCI.19-15-06372.1999
Duchen, 2000, Mitochondria and calcium: from cell signalling to cell death, J. Physiol., 529, 57, 10.1111/j.1469-7793.2000.00057.x
Simpson, 1995, Neuronal Ca2+ stores: activation and function, Trends Neurosci., 18, 299, 10.1016/0166-2236(95)93919-O
Emptage, 1999, Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines, Neuron, 22, 115, 10.1016/S0896-6273(00)80683-2
Castilho, 1999, Oxidative stress mitochondrial function and acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurochem., 72, 1394, 10.1046/j.1471-4159.1999.721394.x
Alano, 2002, Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation, J. Neurochem., 80, 531, 10.1046/j.0022-3042.2001.00738.x
McCormack, 1990, The use of the Ca2(+)-sensitive intramitochondrial dehydrogenases and entrapped fura-2 to study Sr2+ and Ba2+ transport across the inner membrane of mammalian mitochondria, Eur. J. Biochem., 192, 239, 10.1111/j.1432-1033.1990.tb19221.x
Gunter, 1994, Mitochondrial calcium transport: physiological and pathological relevance, Am. J. Physiol., 267, C313, 10.1152/ajpcell.1994.267.2.C313
Dubinsky, 1998, Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons, J. Neurosci. Res., 53, 728, 10.1002/(SICI)1097-4547(19980915)53:6<728::AID-JNR10>3.0.CO;2-U
Luetjens, 2000, Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production, J. Neurosci., 20, 5715, 10.1523/JNEUROSCI.20-15-05715.2000
Cai, 1998, Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss, J. Biol. Chem., 273, 11401, 10.1074/jbc.273.19.11401
Liu, 1996, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell, 86, 147, 10.1016/S0092-8674(00)80085-9
Marcaida, 1995, Lack of correlation between glutamate-induced depletion of ATP and neuronal death in primary cultures of cerebellum, Brain Res., 695, 146, 10.1016/0006-8993(95)00703-S
Sengpiel, 1998, NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria, Eur. J. Neurosci., 10, 1903, 10.1046/j.1460-9568.1998.00202.x
Lafon-Cazal, 1993, NMDA-dependent superoxide production and neurotoxicity, Nature, 364, 535, 10.1038/364535a0
Carriedo, 1998, Rapid Ca2+ entry through Ca2+-permeable AMPA/Kainate channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production, J. Neurosci., 18, 7727, 10.1523/JNEUROSCI.18-19-07727.1998
Carriedo, 2000, AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro, J. Neurosci., 20, 240, 10.1523/JNEUROSCI.20-01-00240.2000
Isaev, 1996, Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+-dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria, FEBS Lett., 392, 143, 10.1016/0014-5793(96)00804-6
Balzer, 1999, Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells, Cardiovasc. Res., 42, 543, 10.1016/S0008-6363(99)00025-5
Wehage, 2002, Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose, J. Biol. Chem., 277, 23150, 10.1074/jbc.M112096200
R. Kraft, C. Grimm, K. Grosse, Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia, Am. J. Physiol. Cell Physiol. 286 (2003) C129–C137.
Zitt, 2002, The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry, Prog. Neurobiol., 66, 243, 10.1016/S0301-0082(02)00002-3
Montell, 2001, Physiology, phylogeny, Sci. STKE, 2001, RE1
Montell, 2002, The TRP channels, a remarkably functional family, Cell, 108, 595, 10.1016/S0092-8674(02)00670-0
Strubing, 2003, Formation of novel TRPC channels by complex subunit interactions in embryonic brain, J. Biol. Chem., 278, 39014, 10.1074/jbc.M306705200
Ambrosio, 1999, Reperfusion injury: experimental evidence and clinical implications, Am. Heart J., 138, S69, 10.1016/S0002-8703(99)70323-6
Bolli, 1998, Causative role of oxyradicals in myocardial stunning: a proven hypothesis. A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction, Basic Res. Cardiol., 93, 156, 10.1007/s003950050079
Benzi, 1982, Relationships between gamma-aminobutyrate and succinate cycles during and after cerebral ischemia, J. Neurosci. Res., 7, 193, 10.1002/jnr.490070210
Fiskum, 1999, Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases, J. Cereb. Blood Flow Metab., 19, 351, 10.1097/00004647-199904000-00001
Sciamanna, 1992, Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis, Biochim. Biophys. Acta, 1134, 223, 10.1016/0167-4889(92)90180-J
Fiskum, 2000, Mitochondrial participation in ischemic and traumatic neural cell death, J. Neurotrauma, 17, 843, 10.1089/neu.2000.17.843
Dykens, 1994, Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration, J. Neurochem., 63, 584, 10.1046/j.1471-4159.1994.63020584.x
Kowaltowski, 1998, The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism, J. Biol. Chem., 273, 12766, 10.1074/jbc.273.21.12766
Kowaltowski, 1995, Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state, Am. J. Physiol., 269, C141, 10.1152/ajpcell.1995.269.1.C141
Kowaltowski, 1996, Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species, FEBS Lett., 378, 150, 10.1016/0014-5793(95)01449-7
Kowaltowski, 1998, Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+, Arch. Biochem. Biophys., 359, 77, 10.1006/abbi.1998.0870
Loschen, 1974, Superoxide radicals as precursors of mitochondrial hydrogen peroxide, FEBS Lett., 42, 68, 10.1016/0014-5793(74)80281-4
Dionisi, 1975, Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues, Biochim. Biophys. Acta, 403, 292, 10.1016/0005-2744(75)90059-5
Boveris, 1976, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide, Biochem. J., 156, 435, 10.1042/bj1560435
Turrens, 1980, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J., 191, 421, 10.1042/bj1910421
Krishnamoorthy, 1988, Studies on the electron transfer pathway, topography of iron–sulfur centers, and site of coupling in NADH-Q oxidoreductase, J. Biol. Chem., 263, 17566, 10.1016/S0021-9258(19)77873-9
Zhang, 1998, Generation of superoxide anion by succinate–cytochrome c reductase from bovine heart mitochondria, J. Biol. Chem., 273, 33972, 10.1074/jbc.273.51.33972
Starkov, 2002, Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax, J. Neurochem., 83, 220, 10.1046/j.1471-4159.2002.01153.x
Turrens, 1997, Superoxide production by the mitochondrial respiratory chain, Biosci. Rep., 17, 3, 10.1023/A:1027374931887
Turrens, 2003, Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335, 10.1113/jphysiol.2003.049478
Lenaz, 2001, The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology, IUBMB Life, 52, 159, 10.1080/15216540152845957
McCormack, 1990, The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues, Biochim. Biophys. Acta, 1018, 287, 10.1016/0005-2728(90)90269-A
Murphy, 1990, Submicromolar Ca2+ regulates phosphorylating respiration by normal rat liver and AS-30D hepatoma mitochondria by different mechanisms, J. Biol. Chem., 265, 10527, 10.1016/S0021-9258(18)86979-4
Zhang, 1998, Electron transfer by domain movement in cytochrome bc1, Nature, 392, 677, 10.1038/33612
Crofts, 1999, Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors, Biochemistry, 38, 15807, 10.1021/bi990962m
Snyder, 2000, Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex, J. Biol. Chem., 275, 13535, 10.1074/jbc.275.18.13535
Turrens, 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys., 237, 408, 10.1016/0003-9861(85)90293-0
Ksenzenko, 1983, Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain, FEBS Lett., 155, 19, 10.1016/0014-5793(83)80200-2
Starkov, 2001, Myxothiazol induces H2O2 production from mitochondrial respiratory chain, Biochem. Biophys. Res. Commun., 281, 645, 10.1006/bbrc.2001.4409
Starkov, 2003, Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state, J. Neurochem., 86, 1101, 10.1046/j.1471-4159.2003.01908.x
Kushnareva, 2002, Complex I mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation–reduction state, Biochem. J., 368, 545, 10.1042/bj20021121
Herrero, 2000, Localization of the site of oxygen radical generation inside the Complex I of heart and nonsynaptic brain mammalian mitochondria, J. Bioenerg. Biomembr., 32, 609, 10.1023/A:1005626712319
Kwong, 1998, Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria, Arch. Biochem. Biophys., 350, 118, 10.1006/abbi.1997.0489
Kakinuma, 1994, Myocardial metabolic markers of total ischemia in vitro, Nagoya J. Med. Sci., 57, 35
Wiesner, 1988, Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart, Biochem. Med. Metab. Biol., 40, 19, 10.1016/0885-4505(88)90100-4
Korshunov, 1997, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15, 10.1016/S0014-5793(97)01159-9
Haworth, 1979, The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site, Arch. Biochem. Biophys., 195, 460, 10.1016/0003-9861(79)90372-2
Zoratti, 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta, 1241, 139, 10.1016/0304-4157(95)00003-A
Minamikawa, 1999, Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells, Exp. Cell Res., 246, 26, 10.1006/excr.1998.4290
Lemasters, 1998, The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy, Biochim. Biophys. Acta, 1366, 177, 10.1016/S0005-2728(98)00112-1
Di Lisa, 2001, Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart, J. Biol. Chem., 276, 2571, 10.1074/jbc.M006825200
Huser, 1998, Imaging the permeability pore transition in single mitochondria, Biophys. J., 74, 2129, 10.1016/S0006-3495(98)77920-2
Fournier, 1987, Action of cyclosporine on mitochondrial calcium fluxes, J. Bioenerg. Biomembr., 19, 297, 10.1007/BF00762419
Harris, 1979, Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability, Biochem. J., 182, 455, 10.1042/bj1820455
He, 2002, Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?, FEBS Lett., 512, 1, 10.1016/S0014-5793(01)03314-2
Kristal, 1997, Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and -independent pathways, J. Neurochem., 69, 524, 10.1046/j.1471-4159.1997.69020524.x
Brustovetsky, 2000, Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria, J. Neurosci., 20, 8229, 10.1523/JNEUROSCI.20-22-08229.2000
Brustovetsky, 2000, Dual responses of CNS mitochondria to elevated calcium, J. Neurosci., 20, 103, 10.1523/JNEUROSCI.20-01-00103.2000
Malkevitch, 1997, Thyroxine induces cyclosporin A-insensitive, Ca2+-dependent reversible permeability transition pore in rat liver mitochondria, FEBS Lett., 412, 173, 10.1016/S0014-5793(97)00666-2
Novgorodov, 1992, The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A, J. Biol. Chem., 267, 16274, 10.1016/S0021-9258(18)41996-5
Novgorodov, 1994, Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP, Arch. Biochem. Biophys., 311, 219, 10.1006/abbi.1994.1230
Chalmers, 2003, The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria, J. Biol. Chem., 278, 19062, 10.1074/jbc.M212661200
Andreyev, 1999, Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver, Cell Death Differ., 6, 825, 10.1038/sj.cdd.4400565
Kristian, 2002, Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria, J. Neurochem., 83, 1297, 10.1046/j.1471-4159.2002.01238.x
Chinopoulos, 2003, Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydiphenyl borate, J. Biol. Chem., 278, 27382, 10.1074/jbc.M303808200
Kushnareva, 2000, Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane, Arch. Biochem. Biophys., 376, 377, 10.1006/abbi.2000.1730
Maciel, 2001, Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria, J. Neurochem., 79, 1237, 10.1046/j.1471-4159.2001.00670.x
Frantseva, 2001, Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons, Free Radic. Biol. Med., 31, 1216, 10.1016/S0891-5849(01)00705-5
A. Starkov, G. Fiskum, Generation of reactive oxygen species by brain mitochondria mediated by alpha-ketoglutarate dehydrogenase, Program No. 194. 17. Washington, DC: Society for Neuroscience, 2002.