Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase

Journal of Cell Science - Tập 116 Số 4 - Trang 647-654 - 2003
Dona C. Love1, Jarema Kochran2,3, R. Lamont Cathey1,4, Sanghoon Shin1, John A. Hanover1
1Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
2Department of Metabolic Diseases, Hoffman-La Roche Inc., 340 Kingsland Street,Nutley, NJ, 07110, USA
3NATIONAL INSTITUTES OF HEALTH
4Present address: Department of General Surgery, Carolinas Medical Center,Charlotte, NC 28232-2861, USA

Tóm tắt

O-linked GlcNAc transferase (OGT) mediates a novel glycan-dependent signaling pathway, but the intracellular targeting of OGT is poorly understood. We examined the localization of OGT by immunofluorescence microscopy, subcellular fractionation and immunoblotting using highly specific affinity-purified antisera. In addition to the expected nuclear localization,we found that OGT was highly concentrated in mitochondria. Since the mitochondrial OGT (103 kDa) was smaller than OGT found in other compartments(116 kDa) we reasoned that it was one of two predicted splice variants of OGT. The N-termini of these isoforms are unique; the shorter form contains a potential mitochondrial targeting sequence. We found that when epitope-tagged,the shorter form (mOGT; 103 kDa) concentrated in HeLa cell mitochondria,whereas the longer form (ncOGT; 116 kDa) localized to the nucleus and cytoplasm. The N-terminus of mOGT was essential for proper targeting. Although mOGT appears to be an active transferase, O-linked GlcNAc-modified substrates do not accumulate in mitochondria. Using immunoelectron microscopy and mitochondrial fractionation, we found that mOGT was tightly associated with the mitochondrial inner membrane. The differential localization of mitochondrial and nucleocytoplasmic isoforms of OGT suggests that they perform unique intracellular functions.

Từ khóa


Tài liệu tham khảo

Akimoto, Y., Kreppel, L. K., Hirano, H. and Hart, G. W.(1999). Localization of the O-linked N-acetylglucosamine transferase in rat pancreas. Diabetes48, 2407-2413.

Akimoto, Y., Kreppel, L. K., Hirano, H. and Hart, G. W.(2000). Increased O-GlcNAc transferase in pancreas of rats with streptozotocin-induced diabetes. Diabetologia43, 1239-1247.

Baskin, D. G., Schwartz, M. W., Seeley, R. J., Woods, S. C.,Porte, D. J., Breininger, J. F., Jonak, Z., Schaefer, J., Krouse, M.,Burghardt, C. et al. (1999). Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus. J. Histochem. Cytochem.47, 353-362.

Blatch, G. L. and Lassle, M. (1999). The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays21, 932-939.

Boehmelt, G., Wakeham, A., Elia, A., Sasaki, T., Plyte, S.,Potter, J., Yang, Y., Tsang, E., Ruland, J., Iscove, N. N. et al.(2000). Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J.19, 5092-5104.

Cole, R. N. and Hart, G. W. (2001). Cytosolic O-glycosylation is abundant in nerve terminals. J. Neurochem.79, 1080-1089.

Comer, F. I. and Hart, G. W. (1999). O-GlcNAc and the control of gene expression. Biochim. Biophys. Acta.1473, 161-171.

Datta, B., Ray, M. K., Chakrabarti, D., Wylie, D. E. and Gupta,N. K. (1989). Glycosylation of eukaryotic peptide chain initiation factor 2 (eIF-2)-associated 67-kDa polypeptide (p67) and its possible role in the inhibition of eIF-2 kinase-catalyzed phosphorylation of the eIF-2 alpha-subunit. J. Biol. Chem.264, 20620-20624.

Du, X. L., Edelstein, D., Rossetti, L., Fantus, I. G., Goldberg,H., Ziyadeh, F., Wu, J. and Brownlee, M. (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA97, 12222-12226.

Du, X. L., Edelstein, D., Dimmeler, S., Ju, Q., Sui, C. and Brownlee, M. (2001). Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Invest.108, 1341-1348.

Haltiwanger, R. S., Blomberg, M. A. and Hart, G. W.(1992). Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J. Biol. Chem.267, 9005-9013.

Hanover, J. A. (2001). Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J.15, 1865-1876.

Hanover, J. A., Cohen, C. K., Willingham, M. C. and Park, M. K. (1987). O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J. Biol. Chem.262, 9887-9894.

Hanover, J. A., Lai, Z., Lee, G., Lubas, W. A. and Sato, S. M. (1999). Elevated O-linked N-acetylglucosamine metabolism in pancreatic beta-cells. Arch. Biochem. Biophys.362, 38-45.

Hanover, J. A., Yu, S., Lubas, W. A., Shin, S. H.,Ragano-Caracciola, M., Kochran, J. and Love, D. C. (2002). Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc Transferase(OGT) encoded by a single mammalian gene. Arch Biochem Biophys. (in press).

Hebert, L. F., Daniels, M. C., Zhou, J., Crook, E. D., Turner,R. L., Simmons, S. T., Neidigh, J. L., Zhu, J. S., Baron, A. D. and McClain,D. A. (1996). Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J. Clin. Invest.98, 930-936.

Holt, G. D. and Hart, G. W. (1986). The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc.J. Biol. Chem.261, 8049-8057.

Kelly, W. G. and Hart, G. W. (1989). Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin.Cell57, 243-251.

Kreppel, L. K., Blomberg, M. A. and Hart, G. W.(1997). Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem.272, 9308-9315.

Liu, K., Paterson, A. J., Chin, E. and Kudlow, J. E.(2000). Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc. Natl. Acad. Sci. USA97, 2820-2825.

Love, D. C., Sweitzer, T. D. and Hanover, J. A.(1998). Reconstitution of HIV-1 rev nuclear export: independent requirements for nuclear import and export. Proc. Natl. Acad. Sci. USA95, 10608-10613.

Lubas, W. A., Frank, D. W., Krause, M. and Hanover, J. A.(1997). O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem.272, 9316-9324.

Lubas, W. A. and Hanover, J. A. (2000). Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem.275, 10983-10988.

Lubas, W. A., Smith, M., Starr, C. M. and Hanover, J. A.(1995). Analysis of nuclear pore protein p62 glycosylation.Biochemistry34, 1686-1694.

Lynn, B. D., Turley, E. A. and Nagy, J. I.(2001). Subcellular distribution, calmodulin interaction, and mitochondrial association of the hyaluronan-binding protein RHAMM in rat brain. J. Neurosci. Res.65, 6-16.

Marshall, S., Bacote, V. and Traxinger, R. R.(1991). Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem.266, 4706-4712.

McClain, D. A., Lubas, W. A., Cooksey, R. C., Hazel, M., Parker,G. J., Love, D. C. and Hanover, J. A. (2002). Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia.Proc. Natl. Acad. Sci. USA99, 10695-10699.

Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S.,Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P. et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.Nature404, 787-790.

Nolte, D. and Muller, U. (2002). Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mamm. Genome13, 62-64.

Noma, T., Fujisawa, K., Yamashiro, Y., Shinohara, M., Nakazawa,A., Gondo, T., Ishihara, T. and Yoshinobu, K. (2001). Structure and expression of human mitochondrial adenylate kinase targeted to the mitochondrial matrix. Biochem. J.358, 225-232.

Osborne, M. A., Dalton, S. and Kochan, J. P.(1995). The yeast tribrid system—genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology(NY)13, 1474-1478.

Roos, M. D. and Hanover, J. A. (2000). Structure of O-linked GlcNAc transferase: mediator of glycan-dependent signaling. Biochem. Biophys. Res. Commun.271, 275-280.

Shafi, R., Iyer, S. P., Ellies, L. G., O'Donnell, N., Marek, K. W., Chui, D., Hart, G. W. and Marth, J. D. (2000). The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA97, 5735-5739.

Starr, C. M. and Hanover, J. A. (1990). Glycosylation of nuclear pore protein p62. Reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro. J. Biol. Chem.265, 6868-6873.

Tang, J., Neidigh, J. L., Cooksey, R. C. and McClain, D. A.(2000). Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance. Diabetes49, 1492-1499.

Traxinger, R. R. and Marshall, S. (1991). Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J. Biol. Chem.266, 10148-10154.

Traxinger, R. R. and Marshall, S. (1992). Insulin regulation of pyruvate kinase activity in isolated adipocytes. Crucial role of glucose and the hexosamine biosynthesis pathway in the expression of insulin action. J. Biol. Chem.267, 9718-9723.

Veerababu, G., Tang, J., Hoffman, R. T., Daniels, M. C., Hebert,L. F. J., Crook, E. D., Cooksey, R. C. and McClain, D. A.(2000). Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance.Diabetes49, 2070-2078.

Wells, L., Vosseller, K. and Hart, G. W.(2001). Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science291, 2376-2378.

Wrabl, J. O. and Grishin, N. V. (2001). Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J. Mol. Biol.314, 365-374.

Yang, X., Zhang, F. and Kudlow, J. E. (2002). Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A:coupling protein O-GlcNAcylation to transcriptional repression.Cell110, 69-80.

Yang, X., Su, K., Roos, M. D., Chang, Q., Paterson, A. J. and Kudlow, J. E. (2001). O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc. Natl. Acad. Sci. USA98, 6611-6616.