Các khía cạnh về Mitochondria và Stress Oxy hóa trong Hippocampus của Chuột Biết Thái độ Đối với Thiếu Acid Béo Không Bão Hòa Đa Liên Kết n-3 Sau Khi Tiếp Xúc Với Căng Thẳng Sớm

Neurochemical Research - Tập 40 - Trang 1870-1881 - 2015
Charles Francisco Ferreira1,2, Juliana Rombaldi Bernardi3, Diego Carrilho da Silva2, Natividade de Sá Couto-Pereira4,2, Carina de Souza Mota4,2, Rachel Krolow4,2, Simone Nardin Weis4, Letícia Pettenuzzo4,2, Flávio Kapczinski5, Patrícia Pelufo Silveira1,2,5, Carla Dalmaz1,4,2
1Programa de Pós-Graduação em Ciências Biológicas: Neurociências - Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
2Laboratório de Neurobiologia do Estresse, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
3Núcleo de Estudos da Saúde da Criança e do Adolescente, Faculdade de Medicina – Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
4Programa de Pós-Graduação em Ciências Biológicas: Bioquímica - Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
5Faculdade de Medicina (FAMED) – Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Tóm tắt

Thiếu hụt axit béo không bão hòa đa chuỗi dài (PUFAs) trong chế độ ăn uống kéo dài có thể dẫn đến những thay đổi trong phospholipid màng tế bào neuron của vỏ não và hồi hải mã, và có thể liên quan đến chức năng hệ thần kinh trung ương bị suy giảm. Đặc biệt, việc thiếu axit docosahexaenoic dường như liên quan đến các rối loạn tâm thần. Mặt khác, những sự kiện tiêu cực xảy ra trong thời kỳ đầu đời cũng có thể ảnh hưởng sâu sắc đến sự phát triển của não, dẫn đến những tác động lâu dài đối với sinh lý thần kinh, sinh học thần kinh và hành vi. Nghiên cứu này đánh giá xem căng thẳng sơ sinh và việc thiếu n-3 PUFAs trong chế độ ăn có thể tương tác với nhau để tạo ra những thay đổi ở hồi hải mã liên quan đến chức năng ty thể ở chuột trưởng thành hay không. Không có ảnh hưởng nào từ chế độ ăn uống, can thiệp sơ sinh hoặc các tương tác trên hoạt tính enzym superoxide dismutase hay catalase, điện thế màng ty thể và các phức hợp chuỗi hô hấp. Những con chuột được cho ăn chế độ ăn thiếu n-3 PUFAs thể hiện mức độ hoạt động glutathione peroxidase và catalase cao hơn, sản xuất gốc tự do cao hơn và nội dung thiol cao hơn so với những con chuột được cho ăn chế độ ăn đủ n-3 PUFAs. Có sự tương tác giữa các chế độ ăn và căng thẳng sơ sinh, vì glutathione peroxidase, sản xuất gốc tự do và nội dung thiol đều tăng lên ở các nhóm được can thiệp sơ sinh và được cho ăn chế độ ăn thiếu n-3 PUFAs. Thêm vào đó, điện thế ty thể giảm được quan sát ở các động vật đã được xử lý. Tổng thiol cho thấy ảnh hưởng của căng thẳng sơ sinh, vì các động vật bị can thiệp sơ sinh có nội dung thiol thấp hơn. Kết luận, chúng tôi nhận thấy rằng việc điều trị kéo dài với chế độ ăn thiếu n-3 PUFAs, bắt đầu từ giai đoạn dậy thì, đã làm tăng sản xuất gốc tự do và mất cân bằng hoạt động của các enzym chống oxy hóa, và những sự gia tăng này cao hơn ở các động vật bị can thiệp sơ sinh.

Từ khóa

#acid béo không bão hòa đa #PUFAs #căng thẳng sơ sinh #hồi hải mã #ty thể #enzym chống oxy hóa #sản xuất gốc tự do

Tài liệu tham khảo

Svennerholm L (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 9:570–579 Bourre JM (2004) Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging 8:163–174 Sinclair AJ (1975) Long-chain polyunsaturated fatty acids in the mammalian brain. Proc Nutr Soc 34:287–291 Peet M, Murphy B, Shay J, Horrobin D (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 43:315–319 Simopoulos AP, Leaf A, Salem N (1999) Workshop on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. J Am Coll Nutr 18:487–489 Alessandri JM, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, Aïd S, Poumès-Ballihaut C, Champeil-Potokar G, Lavialle M (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44:509–538 Muldoon MF, Ryan CM, Sheu L, Yao JK, Conklin SM, Manuck SB (2010) Serum phospholipid docosahexaenonic acid is associated with cognitive functioning during middle adulthood. J Nutr 140:848–853 Aid S, Vancassel S, Poumes-Ballihaut C, Chalon S, Guesnet P, Lavialle M (2003) Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J Lipid Res 44:1545–1551 Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, Durand G (1989) The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 119:1880–1892 Moriguchi T, Greiner RS, Salem N (2000) Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem 75:2563–2573 Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10:377–385 Mazza M, Pomponi M, Janiri L, Bria P, Mazza S (2007) Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry 31:12–26 Litman BJ, Mitchell DC (1996) A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 31(Suppl):S193–S197 Kitajka K, Puskás LG, Zvara A, Hackler L, Barceló-Coblijn G, Yeo YK, Farkas T (2002) The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci USA 99:2619–2624 Yehuda S, Rabinovitz S, Mostofsky DI (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 56:565–570 Sakamoto T, Cansev M, Wurtman RJ (2007) Oral supplementation with docosahexaenoic acid and uridine-5′-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res 1182:50–59 Fedorova I, Hussein N, Di Martino C, Moriguchi T, Hoshiba J, Majchrzak S, Salem N (2007) An n-3 fatty acid deficient diet affects mouse spatial learning in the Barnes circular maze. Prostaglandins Leukot Essent Fatty Acids 77:269–277 Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139:991–997 Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415:154–158 Ferreira CF, Bernardi JR, Krolow R, Arcego DM, Fries GR, de Aguiar BW, Senter G, Kapczinski FP, Silveira PP, Dalmaz C (2013) Vulnerability to dietary n-3 polyunsaturated fatty acid deficiency after exposure to early stress in rats. Pharmacol Biochem Behav 107:11–19 Das UN (2013) Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 29:1175–1185 Catalan J, Moriguchi T, Slotnick B, Murthy M, Greiner RS, Salem N (2002) Cognitive deficits in docosahexaenoic acid-deficient rats. Behav Neurosci 116:1022–1031 Fedorova I, Salem N Jr (2006) Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 75:271–289 Feng Z, Zou X, Jia H, Li X, Zhu Z, Liu X, Bucheli P, Ballevre O, Hou Y, Zhang W et al (2012) Maternal docosahexaenoic acid feeding protects against impairment of learning and memory and oxidative stress in prenatally stressed rats: possible role of neuronal mitochondria metabolism. Antioxid Redox Signal 16:275–289 Bazan NG (2009) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 81:205–211 Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50(Suppl):S400–S405 Crupi R, Marino A, Cuzzocrea S (2013) n-3 fatty acids: role in neurogenesis and neuroplasticity. Curr Med Chem 20:2953–2963 Nakamura MT, Yudell BE, Loor JJ (2013) Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 53C:124–144 Yeh YY, Gehman MF, Yeh SM (1993) Maternal dietary fish oil enriches docosahexaenoate levels in brain subcellular fractions of offspring. J Neurosci Res 35:218–226 Reddy RD, Yao JK (1996) Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids 55:33–43 Brenna JT, Diau GY (2007) The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 77:247–250 Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352 DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123 Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 182:321–331 Arnold S (2012) Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. Adv Exp Med Biol 748:305–339 Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013:484613 Gemma C, Vila J, Bachstetter A, Bickford PC (2007) Frontiers in neuroscience oxidative stress and the aging brain: from theory to prevention. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. CRC Press Taylor & Francis Group, LLC, Boca Raton Hroudová J (2013) Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 8:13 Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126 Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606 Müller WE, Eckert A, Kurz C, Eckert GP, Leuner K (2010) Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease–therapeutic aspects. Mol Neurobiol 41:159–171 Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160 Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270 Martin LJ (2012) Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107:355–415 Sánchez MM, Ladd CO, Plotsky PM (2001) Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol 13:419–449 Levine S (1957) Infantile experience and resistance to physiological stress. Science 126:405 Meaney MJ, Mitchell JB, Aitken DH, Bhatnagar S, Bodnoff SR, Iny LJ, Sarrieau A (1991) The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 16:85–103 Gutman DA, Nemeroff CB (2002) Neurobiology of early life stress: rodent studies. Semin Clin Neuropsychiatry 7:89–95 Nishi M, Horii-Hayashi N, Sasagawa T, Matsunaga W (2013) Effects of early life stress on brain activity: implications from maternal separation model in rodents. Gen Comp Endocrinol 181:306–309 Noschang CG, Krolow R, Fontella FU, Arcego DM, Diehl LA, Weis SN, Arteni NS, Dalmaz C (2010) Neonatal handling impairs spatial memory and leads to altered nitric oxide production and DNA breaks in a sex specific manner. Neurochem Res 35:1083–1091 Noschang C, Krolow R, Arcego DM, Toniazzo AP, Huffell AP, Dalmaz C (2012) Neonatal handling affects learning, reversal learning and antioxidant enzymes activities in a sex-specific manner in rats. Int J Dev Neurosci 30:285–291 Noschang C, Krolow R, Arcego DM, Laureano D, Fitarelli LD, Huffell AP, Ferreira AG, da Cunha AA, Machado FR, Wyse AT, Dalmaz C (2012) The influence of early life interventions on olfactory memory related to palatable food, and on oxidative stress parameters and Na+/K+ -ATPase activity in the hippocampus and olfactory bulb of female adult rats. Neurochem Res 37:1801–1810 de Lima Marcolin M, André de Noronha DB, Arcego DM, Noschang C, Krolow R, Dalmaz C (2012) Effects of early life interventions and palatable diet on anxiety and on oxidative stress in young rats. Physiology and behavior 106(4):491–498 Diehl LA, Alvares LO, Noschang C, Engelke D, Andreazza AC, Gonçalves CA, Quillfeldt JA, Dalmaz C (2012) Long-lasting effects of maternal separation on an animal model of post-traumatic stress disorder: effects on memory and hippocampal oxidative stress. Neurochem Res 37:700–707 Delmas-Beauvieux MC, Peuchant E, Dumon MF, Receveur MC, Le Bras M, Clerc M (1995) Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 28:163–169 Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333 Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126 Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52 Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145 Weis SN, Pettenuzzo LF, Krolow R, Valentim LM, Mota CS, Dalmaz C, Wyse AT, Netto CA (2012) Neonatal hypoxia-ischemia induces sex-related changes in rat brain mitochondria. Mitochondrion 12:271–279 Khanal G, Chung K, Solis-Wever X, Johnson B, Pappas D (2011) Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst 136:3519–3526 Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ (2009) Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5:1099–1106 Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36 Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51 Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827 Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST (2003) Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100:1751–1756 Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47:147–155 Ooi EM, Ng TW, Watts GF, Barrett PH (2013) Dietary fatty acids and lipoprotein metabolism: new insights and updates. Curr Opin Lipidol 24:192–197 Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 56:91–97 Ladelfa MF, Toledo MF, Laiseca JE, Monte M (2011) Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 15:1749–1761 Cardoso HD, Passos PP, Lagranha CJ, Ferraz AC, Santos Júnior EF, Oliveira RS, Oliveira PE, ReC Santos, Santana DF, Borba JM et al (2012) Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids. Front Hum Neurosci 6:249 Bravo JA, Dinan TG, Cryan JF (2014) Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. Front Mol Neurosci 7:24 Park MK, Hoang TA, Belluzzi JD, Leslie FM (2003) Gender specific effect of neonatal handling on stress reactivity of adolescent rats. J Neuroendocrinol 15:289–295 Liu Y, Chen L, Xu X, Vicaut E, Sercombe R (2009) Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 9:17 Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144:5014–5021