Mitochondria, oxidative metabolism and cell death in stroke

Neil R. Sims1, Håkan Muyderman1
1Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide, South Australia, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Flynn, 2008, The cost of cerebral ischaemia, Neuropharmacology, 55, 250, 10.1016/j.neuropharm.2008.05.031

Doyle, 2008, Mechanisms of ischemic brain damage, Neuropharmacology, 55, 310, 10.1016/j.neuropharm.2008.01.005

Galluzzi, 2009, Targeting post-mitochondrial effectors of apoptosis for neuroprotection, Biochim. Biophys. Acta Bioenerg., 1787, 402, 10.1016/j.bbabio.2008.09.006

Sims, 2002, Mitochondrial contributions to tissue damage in stroke, Neurochem. Int., 40, 511, 10.1016/S0197-0186(01)00122-X

Hertz, 2008, Bioenergetics of cerebral ischemia: a cellular perspective, Neuropharmacology, 55, 289, 10.1016/j.neuropharm.2008.05.023

Soane, 2007, Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders, J. Neurosci. Res., 85, 3407, 10.1002/jnr.21498

Memezawa, 1992, Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat, Exp. Brain Res., 89, 67, 10.1007/BF00229002

Back, 2004, Lesion evolution in cerebral ischemia, J. Neurol., 251, 388, 10.1007/s00415-004-0399-y

Belayev, 1997, Transient middle cerebral artery occlusion by intraluminal suture. 1. Three-dimensional autoradiographic image analysis of local cerebral glucose metabolism–blood flow interrelationships during ischemia and early recirculation, J. Cereb. Blood Flow Metab., 17, 1266, 10.1097/00004647-199712000-00002

Gido, 1997, Extracellular potassium in a neocortical core area after transient focal ischemia, Stroke, 28, 206, 10.1161/01.STR.28.1.206

Kristian, 1998, Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion, Exp. Brain Res., 120, 503, 10.1007/s002210050424

Hossmann, 1994, Viability thresholds and the penumbra of focal ischemia, Ann. Neurol., 36, 557, 10.1002/ana.410360404

Back, 1995, 3-Dimensional image analysis of brain glucose metabolism blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion, J. Cereb. Blood Flow Metab., 15, 566, 10.1038/jcbfm.1995.70

Heiss, 1994, Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral-artery oclusion in cats, J. Cereb. Blood Flow Metab., 14, 892, 10.1038/jcbfm.1994.120

Mehta, 2007, Molecular targets in cerebral ischemia for developing novel therapeutics, Brain Res. Rev., 54, 34, 10.1016/j.brainresrev.2006.11.003

Anderson, 1999, Mitochondrial respiratory function and cell death in focal cerebral ischemia, J. Neurochem., 73, 1189, 10.1046/j.1471-4159.1999.0731189.x

Memezawa, 1992, Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats, Stroke, 23, 552, 10.1161/01.STR.23.4.552

Wardlaw, 2003, Thrombolytic therapy with recombinant tissue plasminogen activator for acute ischemic stroke—where do we go from here? A cumulative meta-analysis, Stroke, 34, 1437, 10.1161/01.STR.0000072513.72262.7E

Kassem-Moussa, 2002, Nonocclusion and spontaneous recanalization rates in acute ischemic stroke—a review of cerebral angiography studies, Arch. Neurol., 59, 1870, 10.1001/archneur.59.12.1870

Besancon, 2008, Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke, Trends Pharmacol. Sci., 29, 268, 10.1016/j.tips.2008.02.003

Mies, 1993, Correlation between periinfarct DC shifts and ischemic neuronal damage in rat, NeuroReport, 4, 709, 10.1097/00001756-199306000-00027

Garcia, 1993, Progression from ischemic-injury to infarct following middle cerebral artery occlusion in the rat, Am. J. Pathol., 142, 623

Li, 1995, Temporal profile of in-situ DNA fragmentation after transient middle cerebral artery occlusion in the rat, J. Cereb. Blood Flow Metab., 15, 389, 10.1038/jcbfm.1995.49

Li, 1995, Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral-ischemia in rats, Stroke, 26, 1252, 10.1161/01.STR.26.7.1252

Kroemer, 2007, Mitochondrial membrane permeabilization in cell death, Physiol. Rev., 87, 99, 10.1152/physrev.00013.2006

Krantic, 2007, Apoptosis-inducing factor: a matter of neuron life and death, Prog. Neurobiol., 81, 179, 10.1016/j.pneurobio.2006.12.002

Hengartner, 2000, The biochemistry of apoptosis, Nature, 407, 770, 10.1038/35037710

Asahi, 1997, Expression of interleukin-1 beta converting enzyme gene family and bcl-2 gene family in the rat brain following permanent occlusion of the middle cerebral artery, J. Cereb. Blood Flow Metab., 17, 11, 10.1097/00004647-199701000-00003

Murakami, 1998, Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency, J. Neurosci., 18, 205, 10.1523/JNEUROSCI.18-01-00205.1998

Noto, 2004, Neuroprotective effect of tacrolimus (FK506) on ischemic brain damage following permanent focal cerebral ischemia in the rat, Mol. Brain Res., 128, 30, 10.1016/j.molbrainres.2004.06.003

Festjens, 2006, Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response, Biochim. Biophys. Acta Bioenerg., 1757, 1371, 10.1016/j.bbabio.2006.06.014

Golstein, 2007, Cell death by necrosis: towards a molecular definition, Trends Biochem. Sci., 32, 37, 10.1016/j.tibs.2006.11.001

Folbergrova, 1992, Focal and perifocal changes in tissue energy-state during middle cerebral artery occlusion in normoglycemic and hyperglycemic rats, J. Cereb. Blood Flow Metab., 12, 25, 10.1038/jcbfm.1992.4

Folbergrova, 1995, N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia, Proc. Nat. Acad. Sci. U. S. A., 92, 5057, 10.1073/pnas.92.11.5057

Paschen, 2000, Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism, J. Neurochem., 75, 1675, 10.1046/j.1471-4159.2000.0751675.x

Welsh, 1991, NADH fluorescence and regional energy metabolites during focal ischemia and reperfusion of rat brain, J. Cereb. Blood Flow Metab., 11, 459, 10.1038/jcbfm.1991.88

Silver, 1990, Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo, J. Gen. Physiol., 95, 837, 10.1085/jgp.95.5.837

Onodera, 1986, Mononucleotide metabolism in the rat brain after transient ischemia, J. Neurochem., 46, 1704, 10.1111/j.1471-4159.1986.tb08487.x

Lust, 2002, Ischemic cell death: dynamics of delayed secondary energy failure during reperfusion following focal ischemia, Metab. Brain Dis., 17, 113, 10.1023/A:1015420222334

Haberg, 2001, Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival, J. Cereb. Blood Flow Metab., 21, 1451, 10.1097/00004647-200112000-00010

Haberg, 2006, Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival, Neurochem. Int., 48, 531, 10.1016/j.neuint.2005.12.025

Aureli, 1997, The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy, Brain Res., 765, 218, 10.1016/S0006-8993(97)00514-3

Hassel, 1995, Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose—an ex vivo 13C-NMR spectroscopic study, J. Neurochem., 64, 2773, 10.1046/j.1471-4159.1995.64062773.x

Selman, 2004, Compromised metabolic recovery following spontaneous spreading depression in the penumbra, Brain Res., 999, 167, 10.1016/j.brainres.2003.11.016

Helps, 2007, Inhibition of nitric oxide synthase with 7-nitroindazole does not modify early metabolic recovery following focal cerebral ischemia in rats, Neurochem. Res., 32, 663, 10.1007/s11064-006-9160-5

Thoren, 2006, The metabolism of 14C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats, J. Neurochem., 97, 968, 10.1111/j.1471-4159.2006.03778.x

Ding, 2001, Long-term neuroprotective effect of inhibiting poly(ADP-ribose) polymerase in rats with middle cerebral artery occlusion using a behavioral assessment, Brain Res., 915, 210, 10.1016/S0006-8993(01)02852-9

Komjati, 2004, Poly(ADP-ribose) polymerase inhibition protects neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke, Int. J. Mol. Med., 13, 373

Yoshimoto, 1999, Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia, Brain Res., 839, 283, 10.1016/S0006-8993(99)01733-3

Markgraf, 1998, Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats, Stroke, 29, 152, 10.1161/01.STR.29.1.152

Waniewski, 1998, Preferential utilization of acetate by astrocytes is attributable to transport, J. Neurosci., 18, 5225, 10.1523/JNEUROSCI.18-14-05225.1998

Petito, 1992, Brain glutamine synthetase increases following cerebral-ischemia in the rat, Brain Res., 569, 275, 10.1016/0006-8993(92)90639-Q

Thoren, 2005, Astrocytic function assessed from 1-14C-acetate metabolism after temporary focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 25, 440, 10.1038/sj.jcbfm.9600035

Heiss, 1983, Functional recovery of cortical neurons as related to degree and duration of ischemia, Ann. Neurol., 14, 294, 10.1002/ana.410140307

Bolay, 2002, Persistent defect in transmitter release and synapsin phosphorylation in cerebral cortex after transient moderate ischemic injury, Stroke, 33, 1369, 10.1161/01.STR.0000013708.54623.DE

Ronnett, 2009, AMPK in the brain: its roles in energy balance and neuroprotection, J. Neurochem., 109, 17, 10.1111/j.1471-4159.2009.05916.x

McCullough, 2005, Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke, J. Biol. Chem., 280, 20493, 10.1074/jbc.M409985200

Li, 2007, Neuroprotective effects of adenosine monophosphate—activated protein kinase inhibition and gene deletion in stroke, Stroke, 38, 2992, 10.1161/STROKEAHA.107.490904

Kuroda, 1996, Delayed treatment with alpha-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat, Neurobiol. Dis., 3, 149, 10.1006/nbdi.1996.0015

Nakai, 1997, The immunosuppressant drug FK506 ameliorates secondary mitochondrial dysfunction following transient focal cerebral ischemia in the rat, Neurobiol. Dis., 4, 288, 10.1006/nbdi.1997.0146

Lee, 2009, Alterations in membrane potential in mitochondria isolated from brain subregions during focal cerebral ischemia and early reperfusion: evaluation using flow cytometry, Neurochem. Res., 34, 1857, 10.1007/s11064-009-0001-1

Solenski, 2002, Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia, Stroke, 33, 816, 10.1161/hs0302.104541

Canevari, 1997, Activity of mitochondrial respiratory chain enzymes after transient focal ischemia in the rat, J. Cereb. Blood Flow Metab., 17, 1166, 10.1097/00004647-199711000-00005

Christensen, 2003, Reduction of mitochondrial electron transport complex activity is restricted to the ischemic focus after transient focal cerebral ischemia in rats: a histochemical volumetric analysis, Neurochem. Res., 28, 1805, 10.1023/A:1026111506307

Carlucci, 2008, Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia, EMBO J., 27, 1073, 10.1038/emboj.2008.33

Halestrap, 2006, Calcium, mitochondria and reperfusion injury: a pore way to die, Biochem. Soc. Trans., 34, 232, 10.1042/BST20060232

Leung, 2008, Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore, Biochim. Biophys. Acta Bioenerg., 1777, 946, 10.1016/j.bbabio.2008.03.009

Tsujimoto, 2006, Mitochondrial membrane permeability transition and cell death, Biochim. Biophys. Acta Bioenerg., 1757, 1297, 10.1016/j.bbabio.2006.03.017

Baines, 2005, Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, 434, 658, 10.1038/nature03434

Nakagawa, 2005, Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, 434, 652, 10.1038/nature03317

Schinzel, 2005, Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia, Proc. Nat. Acad. Sci. U. S. A., 102, 12005, 10.1073/pnas.0505294102

Kokoszka, 2004, The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461, 10.1038/nature02229

Matsumoto, 1999, Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion, J. Cereb. Blood Flow Metab., 19, 736, 10.1097/00004647-199907000-00002

Shiga, 1992, Cyclosporine-A protects against ischemia–reperfusion injury in the brain, Brain Res., 595, 145, 10.1016/0006-8993(92)91465-Q

Bochelen, 1999, Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury, J. Pharmacol. Exp. Ther., 288, 653

Korde, 2007, Protective effects of NIM811 in transient focal cerebral ischemia suggest involvement of the mitochondrial permeability transition, J. Neurotrauma, 24, 895, 10.1089/neu.2006.0122

Butcher, 1997, Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an antiexcitotoxic mechanism, J. Neurosci., 17, 6939, 10.1523/JNEUROSCI.17-18-06939.1997

Sharkey, 1994, Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischemia, Nature, 371, 336, 10.1038/371336a0

Saito, 2003, Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia, J. Cereb. Blood Flow Metab., 23, 1010, 10.1097/01.WCB.0000080702.47016.FF

Althaus, 2007, The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion, Neurochem. Int., 50, 172, 10.1016/j.neuint.2006.07.018

Ferrer, 2003, Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat, Neuropathol. Appl. Neurobiol., 29, 472, 10.1046/j.1365-2990.2003.00485.x

Fujimura, 1998, Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 18, 1239, 10.1097/00004647-199811000-00010

Gao, 2005, Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway, J. Cereb. Blood Flow Metab., 25, 694, 10.1038/sj.jcbfm.9600062

Li, 2007, Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus, Neuroscience, 144, 56, 10.1016/j.neuroscience.2006.08.065

Yin, 2002, Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia, J. Biol. Chem., 277, 42074, 10.1074/jbc.M204991200

Guegan, 2000, Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice, Brain Res., 856, 93, 10.1016/S0006-8993(99)02347-1

Shibata, 2002, Temporal profiles of the subcellular localization of Bim, a BH3-only protein, during middle cerebral artery occlusion in mice, J. Cereb. Blood Flow Metab., 22, 810, 10.1097/00004647-200207000-00006

Shichinohe, 2004, FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release, Brain Res., 1001, 51, 10.1016/j.brainres.2003.11.054

Saito, 2004, Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1, Mol. Brain Res., 127, 89, 10.1016/j.molbrainres.2004.05.012

Li, 2006, Tacrolimus (FK506) attenuates biphasic cytochrome c release and Bad phosphorylation following transient cerebral ischemia in mice, Neuroscience, 142, 789, 10.1016/j.neuroscience.2006.06.064

Namura, 1998, Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia, J. Neurosci., 18, 3659, 10.1523/JNEUROSCI.18-10-03659.1998

Le, 2002, Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation, Proc. Nat. Acad. Sci. U. S. A., 99, 15188, 10.1073/pnas.232473399

Endres, 1998, Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family, J. Cereb. Blood Flow Metab., 18, 238, 10.1097/00004647-199803000-00002

Hara, 1997, Inhibition of interleukin 1 beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage, Proc. Nat. Acad. Sci. U. S. A., 94, 2007, 10.1073/pnas.94.5.2007

Mouw, 2002, Caspase-9 inhibition after focal cerebral ischemia improves outcome following reversible focal ischemia, Metab. Brain Dis., 17, 143, 10.1023/A:1019921904378

Martin-Villalba, 1999, CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons, J. Neurosci., 19, 3809, 10.1523/JNEUROSCI.19-10-03809.1999

Rosenbaum, 2000, Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia, J. Neurosci. Res., 61, 686, 10.1002/1097-4547(20000915)61:6<686::AID-JNR12>3.0.CO;2-7

Velier, 1999, Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat, J. Neurosci., 19, 5932, 10.1523/JNEUROSCI.19-14-05932.1999

Gill, 2002, Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain, J. Cereb. Blood Flow Metab., 22, 420, 10.1097/00004647-200204000-00006

Cande, 2004, AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis, Oncogene, 23, 1514, 10.1038/sj.onc.1207279

Culmsee, 2005, Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia, J. Neurosci., 25, 10262, 10.1523/JNEUROSCI.2818-05.2005

Lee, 2005, Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice, Neurosci. Lett., 386, 23, 10.1016/j.neulet.2005.05.058

Plesnila, 2004, Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia, J. Cereb. Blood Flow Metab., 24, 458, 10.1097/00004647-200404000-00011

Nielsen, 2009, Nuclear translocation of endonuclease G in degenerating neurons after permanent middle cerebral artery occlusion in mice, Exp. Brain Res., 194, 17, 10.1007/s00221-008-1665-5

Okuno, 2004, The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia, J. Neurosci., 24, 7879, 10.1523/JNEUROSCI.1745-04.2004

Saito, 2003, Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the bad cell death signaling pathway, J. Neurosci., 23, 1710, 10.1523/JNEUROSCI.23-05-01710.2003

Plesnila, 2001, BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia, Proc. Nat. Acad. Sci. U. S. A., 98, 15318, 10.1073/pnas.261323298

Landshamer, 2008, Bid-induced release of AIF from mitochondria causes immediate neuronal cell death, Cell Death Differ., 15, 1553, 10.1038/cdd.2008.78

de Bilbao, 2000, Cell death is prevented in thalamic fields but not in injured neocortical areas after permanent focal ischaemia in mice overexpressing the anti-apoptotic protein Bcl-2, Eur. J. Neurosci., 12, 921, 10.1046/j.1460-9568.2000.00984.x

Martinou, 1994, Overexpression of Bcl-2 in transgenic mice protects neurons from naturally-occurring cell death and experimental ischemia, Neuron, 13, 1017, 10.1016/0896-6273(94)90266-6

Wiessner, 1999, Neuron-specific transgene expression of Bcl-X-L but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice, Neurosci. Lett., 268, 119, 10.1016/S0304-3940(99)00392-4

Zhao, 2004, Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat, J. Cereb. Blood Flow Metab., 24, 681, 10.1097/01.WCB.0000127161.89708.A5

Keller, 1998, Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction, J. Neurosci., 18, 687, 10.1523/JNEUROSCI.18-02-00687.1998

Kim, 2002, Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice—implications for the production and role of superoxide radicals, Stroke, 33, 809, 10.1161/hs0302.103745

Korde, 2005, The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia, J. Neurochem., 94, 1676, 10.1111/j.1471-4159.2005.03328.x

Anderson, 2002, The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions, J. Neurochem., 81, 541, 10.1046/j.1471-4159.2002.00836.x

Muyderman, 2004, Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite, J. Neurosci., 24, 8019, 10.1523/JNEUROSCI.1103-04.2004

Muyderman, 2007, Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytes, J. Neurochem., 102, 1369, 10.1111/j.1471-4159.2007.04641.x

Chan, 1993, Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia, NeuroReport, 5, 293, 10.1097/00001756-199312000-00028

Kinouchi, 1991, Attenuation of focal cerebral ischemic-injury in transgenic mice overexpressing CuZn superoxide dismutase, Proc. Nat. Acad. Sci. U. S. A., 88, 11158, 10.1073/pnas.88.24.11158

Fujimura, 2000, The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice, J. Neurosci., 20, 2817, 10.1523/JNEUROSCI.20-08-02817.2000

Saito, 2004, Oxidative stress is associated with XIAP and Smac/DIABLO signaling pathways in mouse brains after transient focal cerebral ischemia, Stroke, 35, 1443, 10.1161/01.STR.0000128416.28778.7a

Dawson, 2004, Deadly conversations: nuclear–mitochondrial cross-talk, J. Bioenerg. Biomembr., 36, 287, 10.1023/B:JOBB.0000041755.22613.8d

Eliasson, 1997, Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia, Nat. Med., 3, 1089, 10.1038/nm1097-1089

Endres, 1997, Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase, J. Cereb. Blood Flow Metab., 17, 1143, 10.1097/00004647-199711000-00002

Goto, 2002, Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery, Stroke, 33, 1101, 10.1161/01.STR.0000014203.65693.1E

Yu, 2006, Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death, Proc. Nat. Acad. Sci. U. S. A., 103, 18314, 10.1073/pnas.0606528103