Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giảm thiểu ô nhiễm nhựa thông qua thiết kế quy trình tốt hơn: một cơ hội từ sinh khối đến nhựa sinh học
Biomass Conversion and Biorefinery - Trang 1-22 - 2021
Tóm tắt
Nhựa sinh học thường được sản xuất từ các cây lương thực, điều này đã góp phần vào cuộc khủng hoảng thực phẩm toàn cầu bằng cách chiếm dụng diện tích rộng lớn mà trước đây được sử dụng để trồng cây dành cho tiêu dùng của con người hoặc thức ăn cho động vật. Do đó, cụm trái cây thải (EFB) được chọn trong bài báo này do những đặc điểm phù hợp ở mọi khía cạnh như hàm lượng xenluloz cao, không phải cây lương thực và giá thành hợp lý cho việc sản xuất nhựa sinh học bền vững. Tuy nhiên, các nguồn carbon chiếm khoảng 50% tổng chi phí sản xuất polyhydroxyalkanoate (PHA) gây ra những hạn chế. Vì vậy, việc đánh giá kinh tế bao gồm chi phí vốn (CAPEX), chi phí hoạt động (OPEX), doanh thu (REV) cũng như đánh giá vòng đời (LCA) bao gồm tiềm năng ấm lên toàn cầu (GWP), tiềm năng axit hóa (AP), tiềm năng phát thải dinh dưỡng (EP), và độc tính nước ngọt (FE) được thực hiện một cách cụ thể cho các quy trình tiền xử lý và thủy phân khác nhau để sản xuất PHA từ EFB. Sau đó, một mô hình tối ưu hóa lập trình phi tuyến hỗn hợp (MINLP) đã được sử dụng để tối ưu hóa quy trình sản xuất PHA từ EFB thô cho sáu lộ trình quy trình khác nhau. Hàm mục tiêu của MINLP được thiết lập nhằm tối thiểu hóa tổng chi phí hàng năm và điểm số chuẩn hóa vòng đời của sản xuất PHA. Tiền xử lý sinh học theo sau là thủy phân enzym (tiền xử lý sinh học - thủy phân enzym) cho thấy lộ trình thân thiện với môi trường và hiệu quả về mặt chi phí nhất với các nguồn carbon chiếm 24.3% tổng chi phí hàng năm.
Từ khóa
#nhựa sinh học #cụm trái cây thải #sản xuất PHA #tối ưu hóa quy trình #đánh giá kinh tế #đánh giá vòng đời #chi phí hàng nămTài liệu tham khảo
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7)
Chaiwong W, Samoh N, Eksomtramage T, Kaewtatip K (2019) Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic. Compos B Eng 176:107331
EUROPEAN COMMISSION, COMMUNICATION.A European strategy for plastics in a circular economy; EUROPEAN COMMISSION: Brussels, Belgium, 2018.
Neves AC, Moyne MM, Eyre C, Casey BP (2020) Acceptability and societal impact of the introduction of bioplastics as novel environmentally friendly packaging materials in Ireland. Clean Technologies 2(1):127–143
Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, Öner M (2017) Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl Chem 89(12):1841–1848
Yustinah, N. Hidayat, R. Alamsyah, A. M. Roslan, H. Hermansyah, and M. Gozan, Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001, Biocatalysis and Agricultural Biotechnology, 2019.
Zhang Y, Sun W, Wang H, Geng A (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Biores Technol 147:307–314
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z (2021) Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Manage 119:374–388
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, ToluwalopeOdediran E, Louis H (2020) Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochemistry 96:174–193
DV (2020) Enhancement of Polyhydroxybutyrate (PHB) Production using organic waste as substrate. Int J Res Appl Sci Eng Technol 8(5):1012–1016
Lynch DHJ, Klaassen P, Broerse JEW (2017) “Unraveling Dutch citizens’ perceptions on the bio-based economy: the case of bioplastics, bio-jetfuels and small-scale bio-refineries. Ind Crops Prod 106:130–137
Du G, Chen LX, Yu J (2004) High-efficiency production of bioplastics from biodegradable organic solids. J Polym Environ 12(2):89–94
G. Coppola, M. T. Gaudio, C. G. Lopresto, V. Calabro, S. Curcio, and S. Chakraborty, Bioplastic from renewable biomass: a facile solution for a greener environment, Earth Systems and Environment, 2021.
Silva LF, Taciro MK, Michelin Ramos ME, Carter JM, Pradella JG, Gomez JG (2004) Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31(6):245–254
Silva JA, Tobella LM, Becerra J, Godoy F, Martínez MA (2007) Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. J Biosci Bioeng 103(6):542–546
Radhika D, Murugesan AG (2012) Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Biores Technol 121:83–92
OnenCinar S, Chong ZK, Kucuker MA, Wieczorek N, Cengiz U, Kuchta K (2020) Bioplastic production from microalgae: a review. Int J Environ Res Public Health 17(11):3842
Ezechi EH, Muda K (2019) Overview of trends in crude palm oil production and economic impact in Malaysia. Sri J Environ 4(1):19–26
Padzil FN, Lee SH, Ainun ZM, Lee CH, Abdullah LC (2020) Potential of oil palm empty fruit bunch resources in nanocellulose hydrogel production for versatile applications: a review. Materials 13(5):1245
N. A. Manikandan, K. Pakshirajan, and G. Pugazhenthi, Value addition of waste lignocellulosic biomass through polyhydroxybutyrate production, Waste Biorefinery, pp. 155–178, 2020
Palamae S, Dechatiwongse P, Choorit W, Chisti Y, Prasertsan P (2017) Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohyd Polym 155:491–497
Ramadas NV, Soccol CR, Pandey A (2009) A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. Appl Biochem Biotechnol 162(4):996–1007
Gowda V, Shivakumar S (2014) Agrowaste-based Polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077. Braz Arch Biol Technol 57(1):55–61
Arbaain EN, Bahrin EK, Ibrahim MF, Ando Y, Abd-Aziz S (2019) Biological pretreatment of oil palm empty fruit bunch by Schizophyllum commune ENN1 without washing and nutrient addition. Processes 7(7):402
Markom M (2016) The Effect of Various Pretreatment methods on empty fruit bunch for glucose production. Malaysian Journal of Analytical Science 20(6):1474–1480
Abdullah N, Sulaiman F (2013) The properties of the washed empty fruit bunches of oil palm. J Phys Sci 24(2):117
Duangwang S, Sangwichien C (2012) Optimizing alkali pretreatment of oil palm empty fruit bunch for ethanol production by application of response surface methodology. Adv Mater Res 622–623:117–121
Tsabitah S, Omar AA, Ismail L (2014) Chemical pretreatment comparison for oil palm empty fruit bunch: a review. Appl Mech Mater 625:851–855
Barlianti V, Dahnum D, Hendarsyah H, Abimanyu H (2015) Effect of alkaline pretreatment on properties of lignocellulosic oil palm waste. Procedia Chem 16:195–201
Kamcharoen A, Champreda V, Eurwilaichitr L, Boonsawang P (2014) Screening and optimization of parameters affecting fungal pretreatment of oil palm empty fruit bunch (EFB) by experimental design. Int J Energy Environ Eng 5(4):303–312
Rajannan G, Kavitha, Jothimani P (2013) 2013 Empty fruit bunch – a potential organic manure for agriculture. Int J Sci Environ Technol 2(5):930–937
Hassan MA, Yee L-N, Yee PL, Ariffin H, Raha AR, Shirai Y, Sudesh K (2013) Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenerg 50:1–9
Tan HT, Dykes GA, Wu TY, Siow LF (2013) Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis. Appl Biochem Biotechnol 170(7):1602–1613
Razali N, Hossain MS, Taiwo OA, Ibrahim M, Mohd Nadzri NW, Razak N, Mohammad Rawi NF, MohdMahadar M, Mohamad Kassim MH (2017) Influence of acid hydrolysis reaction time on the isolation of cellulose nanowhiskers from oil palm empty fruit bunch microcrystalline cellulose. BioResources 12:3
Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11):2937
J. B. Guinee, Handbook on life cycle assessment operational guide to the ISO standards, The International Journal of Life Cycle Assessment, vol. 7, no. 5, 2002.
D. C. Foo, M. M. El-Halwagi, and R. R. Tan, Recent advances in sustainable process design and optimization, Advances in Process Systems Engineering, 2011.
Sleeswijk AW, van Oers LFCM, Guinée JB, Struijs J, Huijbregts MAJ (2008) Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Sci Total Environ 390(1):227–240
F. Pacheco-Torgal, Introduction to biopolymers and biotech admixtures for eco-efficient construction materials, Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, pp. 1–10, 2016.
Anderson TR, Hawkins E, Jones PD (2016) “CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40(3):178–187
Reşitoğlu İA, Altinişik K, Keskin A (2014) The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol Environ Policy 17(1):15–27
Masanet E, Chang Y, Gopal AR, Larsen P, Morrow WR, Sathre R, Shehabi A, Zhai P (2013) Life-cycle assessment of electric power systems. Annu Rev Environ Resour 38(1):107–136
N. Gundogan, Klebsiella, Encyclopedia of Food Microbiology, pp. 383–388, 2014.
Y. K. Leong, P. L. Show, J. Lan, H.-S. Loh, H. L. Lam, and T. C. Ling, Economic and environmental analysis of PHAs production process, Jun. 2017.
Amasawa E, Yamanishi T, Nakatani J, Hirao M, Sato S (2021) Climate change implications of bio-based and marine-biodegradable plastic: evidence from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Environ Sci Technol 55(5):3380–3388
Jothimani, P. and G. Rajannan. Empty fruit bunch- a potential organic manure for agriculture. 2013.
GjorgievaAckova D (2018) Heavy metals and their general toxicity for plants. Plant Sci Today 5(1):14–18