Mitigating communications threats in decentralized federated learning through moving target defense
Tóm tắt
Từ khóa
Tài liệu tham khảo
Reinsel, D., Gantz, J., & Rydnin, J.: The digitization of the world from edge to core (2018). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
Martínez Beltrán, E. T., Quiles Pérez, M., Sánchez Sánchez, P. M., López Bernal, S., Bovet, G., Gil Pérez, M., Martínez Pérez, G., & Huertas Celdrán, A. (2023). Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE Communications Surveys & Tutorials, 25(4), 2983–3013. https://doi.org/10.1109/COMST.2023.3315746
Shi, Y., Liu, Y., Sun, Y., Lin, Z., Shen, L., Wang, X., & Tao, D.: Towards more suitable personalization in federated learning via decentralized partial model training. arXiv preprint arXiv:2305.15157 (2023)
Salama, A., Stergioulis, A., Hayajneh, A. M., Zaidi, S. A. R., McLernon, D., & Robertson, I. (2023). Decentralized federated learning over slotted aloha wireless mesh networking. IEEE Access, 11, 18326–18342. https://doi.org/10.1109/ACCESS.2023.3246924
Xiao, Y., Ye, Y., Huang, S., Hao, L., Ma, Z., Xiao, M., Mumtaz, S., & Dobre, O. A. (2021). Fully decentralized federated learning-based on-board mission for UAV swarm system. IEEE Communications Letters, 25(10), 3296–3300. https://doi.org/10.1109/LCOMM.2021.3095362
Perales Gómez, Á.L., Martínez Beltrán, E. T., Sánchez Sánchez, P. M., & Huertas Celdrán, A.: TemporalFED: detecting cyberattacks in industrial time-series data using decentralized federated learning. arXiv preprint arXiv:2308.03554 (2023)
Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., Dehghantanha, A., & Srivastava, G. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems, 115, 619–640. https://doi.org/10.1016/j.future.2020.10.007
Etxezarreta, X., Garitano, I., Iturbe, M., & Zurutuza, U. (2023). Low delay network attributes randomization to proactively mitigate reconnaissance attacks in industrial control systems. Wireless Networks. https://doi.org/10.1007/s11276-022-03212-5
Gholami, A., Torkzaban, N., & Baras, J. S.: Trusted decentralized federated learning. In IEEE 19th annual consumer communications and networking conference (pp. 1–6) (2022). https://doi.org/10.1109/CCNC49033.2022.9700624
Mothukuri, V., Parizi, R. M., Pouriyeh, S., Dehghantanha, A., & Choo, K.-K.R. (2022). FabricFL: Blockchain-in-the-loop federated learning for trusted decentralized systems. IEEE Systems Journal, 16(3), 3711–3722. https://doi.org/10.1109/JSYST.2021.3124513
Li, Y., Wang, X., Sun, R., Xie, X., Ying, S., & Ren, S. (2023). Trustiness-based hierarchical decentralized federated learning. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2023.110763
Chen, Y., Liang, L., & Gao, W. (2023). Non trust detection of decentralized federated learning based on historical gradient. Engineering Applications of Artificial Intelligence, 120, 105888. https://doi.org/10.1016/j.engappai.2023.105888
Wang, P., Sun, W., Zhang, H., Ma, W., & Zhang, Y. (2023). Distributed and secure federated learning for wireless computing power networks. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2023.3247859
Singh, S. K., Yang, L. T., & Park, J. H. (2023). Fusionfedblock: Fusion of blockchain and federated learning to preserve privacy in industry 5.0. Information Fusion, 90, 233–240. https://doi.org/10.1016/j.inffus.2022.09.027
Qu, Y., Xu, C., Gao, L., Xiang, Y., & Yu, S. (2022). FL-SEC: Privacy-preserving decentralized federated learning using SignSGD for the Internet of Artificially Intelligent Things. IEEE Internet of Things Magazine, 5(1), 85–90. https://doi.org/10.1109/IOTM.001.2100173
Wang, L., Zhao, X., Lu, Z., Wang, L., & Zhang, S. (2023). Enhancing privacy preservation and trustworthiness for decentralized federated learning. Information Sciences, 628, 449–468. https://doi.org/10.1016/j.ins.2023.01.130
Arapakis, I., Papadopoulos, P., Katevas, K., & Perino, D.: P4l: Privacy preserving peer-to-peer learning for infrastructureless setups. arXiv preprint arXiv:2302.13438 (2023)
Ridhawi, I. A., Otoum, S., & Aloqaily, M.: Decentralized zero-trust framework for digital twin-based 6g. arXiv preprint arXiv:2302.03107 (2023)
Martínez Beltrán, E. T., Perales Gómez, Á. L., Feng, C., Sánchez Sánchez, P. M., López Bernal, S., Bovet, G., Gil Pérez, M., Martínez Pérez, G., & Huertas Celdrán, A. (2024). Fedstellar: A platform for decentralized federated learning. Expert Systems with Applications, 242, 122861. https://doi.org/10.1016/j.eswa.2023.122861
Deng, L. (2012). The MNIST database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 29(6), 141–142. https://doi.org/10.1109/MSP.2012.2211477
Alangot, B., Reijsbergen, D., Venugopalan, S., Szalachowski, P., & Yeo, K. S. (2021). Decentralized and lightweight approach to detect eclipse attacks on proof of work blockchains. IEEE Transactions on Network and Service Management, 18(2), 1659–1672. https://doi.org/10.1109/TNSM.2021.3069502
