Mitigating Thermal Runaway of Lithium-Ion Batteries

Joule - Tập 4 Số 4 - Trang 743-770 - 2020
Xuning Feng1,2, Dongsheng Ren2, Xiangming He1, Minggao Ouyang2
1Institute of Nuclear and New Energy Technology, Tsinghua University,Beijing 100084, China
2State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hur, 2018, High areal energy density 3D lithium-ion microbatteries, Joule, 2, 1187, 10.1016/j.joule.2018.04.002

Tu, 2017, Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries, Joule, 1, 394, 10.1016/j.joule.2017.06.002

Olivetti, 2017, Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals, Joule, 1, 229, 10.1016/j.joule.2017.08.019

Wang, 2019, A review of lithium ion battery failure mechanisms and fire prevention strategies, Prog. Energy Combust. Sci., 73, 95, 10.1016/j.pecs.2019.03.002

Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013

Feng, 2014, Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry, J. Power Sources, 255, 294, 10.1016/j.jpowsour.2014.01.005

Feng, 2019, Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database, Appl. Energy, 246, 53, 10.1016/j.apenergy.2019.04.009

Feng, 2014, Characterization of large format lithium ion battery exposed to extremely high temperature, J. Power Sources, 272, 457, 10.1016/j.jpowsour.2014.08.094

Feng, 2018, A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries, J. Electrochem. Soc., 165, A3748, 10.1149/2.0311816jes

Feng, 2018, Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode, Front. Energy Res., 6, 126, 10.3389/fenrg.2018.00126

Liu, 2018, Thermal runaway of lithium-ion batteries without internal short circuit, Joule, 2, 2047, 10.1016/j.joule.2018.06.015

Li, 2019, Thermal runaway triggered by plated lithium on the anode after fast charging, ACS Appl. Mater. Interfaces, 11, 46839, 10.1021/acsami.9b16589

Feng, 2019, Influence of aging paths on the thermal runaway features of lithium-ion batteries in accelerating rate calorimetry tests, Int. J. Electrochem. Sci., 14, 44, 10.20964/2019.01.14

Noh, 2013, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233, 121, 10.1016/j.jpowsour.2013.01.063

Larsson, 2018, Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing, J. Power Sources, 373, 220, 10.1016/j.jpowsour.2017.10.085

Wang, 2017, Combustion behavior of lithium iron phosphate battery induced by external heat radiation, J. Loss Prevent Proc., 49, 961, 10.1016/j.jlp.2016.12.002

Ma, 2014, The impact of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry, J. Electrochem. Soc., 161, A1495, 10.1149/2.0091410jes

Zhang, Z. (2002). Separator for a high energy rechargeable lithium battery. US Patent 6432586 B1, Filed, April 10, 2000, and granted. August 13, 2002. https://patentimages.storage.googleapis.com/8d/ac/6f/3d6339a0f4bed1/US6432586.pdf.

Rahman, 2019, High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators, Energy Storage Mater., 19, 352, 10.1016/j.ensm.2019.03.027

Noelle, 2018, Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries, J. Power Sources, 384, 93, 10.1016/j.jpowsour.2018.02.068

Chen, 2016, Fast and reversible thermoresponsive polymer switching materials for safer batteries, Nat. Energy, 1, 15009, 10.1038/nenergy.2015.9

Xu, 2019, Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes, Nat. Energy, 4, 484, 10.1038/s41560-019-0387-1

Hou, 2017, Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9, 29643, 10.1021/acsami.7b05986

Liu, 2018, Materials for lithium-ion battery safety, Sci. Adv., 4, eaas9820, 10.1126/sciadv.aas9820

Friesen, 2017, Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior, J. Power Sources, 363, 70, 10.1016/j.jpowsour.2017.07.062

Ji, 2015, Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries, RSC Adv, 5, 172, 10.1039/C4RA11500G

Shi, 2017, Mitigating thermal runaway of lithium-ion battery through electrolyte displacement, Appl. Phys. Lett., 110, 063902, 10.1063/1.4975653

Naguib, 2018, Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries, Joule, 2, 155, 10.1016/j.joule.2017.11.003

Liu, 2017, Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries, Sci. Adv., 3, e1601978, 10.1126/sciadv.1601978

Li, 2019, Flammability characteristics of the battery vent gas: a case of NCA and LFP lithium-ion batteries during external heating abuse, J. Energy Storage, 24, 100775, 10.1016/j.est.2019.100775

Kalhoff, 2015, Safer electrolytes for lithium-ion batteries: state of the art and perspectives, ChemSusChem, 8, 2154, 10.1002/cssc.201500284

Chawla, 2019, Recent advances in non-flammable electrolytes for safer lithium-ion batteries, Batteries, 5, 19, 10.3390/batteries5010019

Chen, 2018, High-efficiency lithium metal batteries with fire-retardant electrolytes, Joule, 2, 1548, 10.1016/j.joule.2018.05.002

Zeng, 2018, Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries, Nat. Energy, 3, 674, 10.1038/s41560-018-0196-y

Feng, 2015, Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery, Appl. Energy, 154, 74, 10.1016/j.apenergy.2015.04.118

Yuan, 2019, Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module, Appl. Therm. Eng., 153, 39, 10.1016/j.applthermaleng.2019.02.127

Kshetrimayum, 2019, Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system, Appl. Therm. Eng., 159, 113797, 10.1016/j.applthermaleng.2019.113797

Li, 2019, Numerical investigation of thermal runaway mitigation through a passive thermal management system, J. Power Sources, 429, 80, 10.1016/j.jpowsour.2019.04.091

Feng, 2016, A 3D thermal runaway propagation model for a large format lithium ion battery module, Energy, 115, 194, 10.1016/j.energy.2016.08.094

Arora, 2016, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renew. Sustain. Energ. Rev., 60, 1319, 10.1016/j.rser.2016.03.013

Xu, 2017, Preliminary study on the mechanism of lithium ion battery pack under water immersion, ECS Trans., 77, 209, 10.1149/07711.0209ecst

Walker, 2019, Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods, J. Power Sources, 415, 207, 10.1016/j.jpowsour.2018.10.099

Finegan, 2019, Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells, J. Power Sources, 417, 29, 10.1016/j.jpowsour.2019.01.077

Chen, 2019, Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries, Joule, 3, 1094, 10.1016/j.joule.2019.02.004

Liu, 2020, Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries, Appl. Energy, 259, 114143, 10.1016/j.apenergy.2019.114143

Feng, 2018, Overview about accidents: selected lessons learned from prior safety-related failures of Li-ion batteries, 571

Li, 2018, Lightweight and crashworthiness design of an electric vehicle using a six-sigma robust design optimization method, Eng. Optim., 51, 1393, 10.1080/0305215X.2018.1521396

Moon, J., and Ahn, B. (2013). Secondary Battery Having Insulation Bag. US Patent 9196886/B2. Filed, Aug. 30, 2010, and granted, Nov. 24, 2015. https://patentimages.storage.googleapis.com/6c/0a/a4/6bc31b8955636c/US9196886.pdf.

Pan, 2019, Early warning of thermal runaway for lithium-ion battery based on multi-sensor detection, The Electrochemical Society

Yang, 2017, 4.0 V aqueous Li-ion batteries, Joule, 1, 122, 10.1016/j.joule.2017.08.009

Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030, 10.1038/nenergy.2016.30

Byun, S.W., Yoo, S.Y., Lee, C.Y., and Lee, K.H. (2016). Rechargeable Battery Having Short-circuit Protrusion. U.S Patent 14/732,484. Filed, Jun 5, 2015, and granted, Feb. 11, 2016. https://patentimages.storage.googleapis.com/8f/a6/fc/e9755a489e1a36/US20160043379A1.pdf.

Chu, 2017, Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model, Appl. Energy, 204, 1240, 10.1016/j.apenergy.2017.03.111

Guérin, 2000, A 7Li NMR study of a hard carbon for lithium–ion rechargeable batteries, Solid State Ionics, 127, 187, 10.1016/S0167-2738(99)00290-8

Zinth, 2014, Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction, J. Power Sources, 271, 152, 10.1016/j.jpowsour.2014.07.168

Fang, 2019, Quantifying inactive lithium in lithium metal batteries, Nature, 572, 511, 10.1038/s41586-019-1481-z

Petzl, 2014, Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries, J. Power Sources, 254, 80, 10.1016/j.jpowsour.2013.12.060

Ma, 2018, Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis, Energy, 164, 745, 10.1016/j.energy.2018.09.047

Sazhin, 2017, Enhancing Li-ion battery safety by early detection of nascent internal shorts, J. Electrochem. Soc., 164, A6281, 10.1149/2.0431701jes

Feng, 2018, Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm, J. Energy Storage, 18, 26, 10.1016/j.est.2018.04.020

Yang, 2019, Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries, Joule, 3, 3002, 10.1016/j.joule.2019.09.021

Jeevarajan, 2011, Hazards associated with high voltage high capacity lithium-ion batteries, ECS Trans., 33, 1, 10.1149/1.3557704

Koch, 2018, Fast thermal runaway detection for lithium-ion cells in large scale traction batteries, Batteries, 4, 16, 10.3390/batteries4020016

Wu, 2014, Improving battery safety by early detection of internal shorting with a bifunctional separator, Nat. Commun., 5, 5193, 10.1038/ncomms6193

Heiskanen, 2019, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3, 2322, 10.1016/j.joule.2019.08.018

Wen, 2019, Smart materials and design toward safe and durable lithium ion batteries, Small Methods, 3, 1900323, 10.1002/smtd.201900323

Zhang, 2016, Poly (3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries, Electrochim. Acta, 187, 173, 10.1016/j.electacta.2015.11.036

Yang, 2018, Thermal-responsive polymers for enhancing safety of electrochemical storage devices, Adv. Mater., 30, e1704347, 10.1002/adma.201704347

Baginska, 2012, Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres, Adv. Energy Mater., 2, 583, 10.1002/aenm.201100683

Liu, 2017, Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator, Adv. Mater., 29, 27874235

Chu, 2020, A control-oriented electrochemical model for lithium-ion battery. part II: parameter identification based on reference electrode, J. Energy Storage, 27, 101101, 10.1016/j.est.2019.101101

Li, 2019, Lithium-ion battery modeling based on big data, Energy Proced., 159, 168, 10.1016/j.egypro.2018.12.046

Severson, 2019, Data-driven prediction of battery cycle life before capacity degradation, Nat. Energy, 4, 383, 10.1038/s41560-019-0356-8

Li, 2019, Data-driven safety envelope of lithium-ion batteries for electric vehicles, Joule, 3, 2703, 10.1016/j.joule.2019.07.026

Zhang, 2015, Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse, J. Power Sources, 290, 102, 10.1016/j.jpowsour.2015.04.162

Wilke, 2017, Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study, J. Power Sources, 340, 51, 10.1016/j.jpowsour.2016.11.018

Börger, 2019, Thermal runaway and thermal runaway propagation in batteries: what do we talk about?, J. Energy Storage, 24, 100649, 10.1016/j.est.2019.01.012

Feng, 2019, Evaluating the thermal runaway propagation within a battery pack: the unsolved problems that hinders the consensus on the test profile in Electric-Vehicle-Safety Global-Technical-Regulation, The Electrochemical Society