Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbass HA. MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation (CEC 2001), vol 1. IEEE; 2001. , p. 207–14.
Aranha C, Campelo F. Evolutionary computation bestiary; 2019. https://github.com/fcampelo/EC-Bestiary (online accessed 9 Oct 2019).
Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of the 2007 congress on evolutionary computation (CEC 2007). IEEE; 2007. p. 4661–7.
Blackwell T, Branke J. Multi-swarm optimization in dynamic environments. In: Workshops on applications of evolutionary computation. Springer; 2004. p. 489–500.
Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Rong Q. Hyper-heuristics: a survey of the state of the art. J Oper Res Soc. 2013;64(12):1695–724.
Chen J, Qin Z, Liu Y, Lu J. Particle swarm optimization with local search. In: International conference on neural networks and brain (ICNN&B’05), vol. 1. IEEE; 2005. p. 481–4.
Chu S-C, Tsai P-W, Pan J-S. Cat swarm optimization. In: Pacific rim international conference on artificial intelligence. Springer; 2006. p. 854–8.
Črepinšek M, Liu S-H, Mernik L. A note on teaching-learning-based optimization algorithm. Inf Sci. 2012;212:79–93.
Črepinšek M, Liu S-H, Mernik L, Mernik M. Is a comparison of results meaningful from the inexact replications of computational experiments? Soft Comput. 2016;20(1):223–35.
Du W, Gao Y, Liu C, Zheng Z, Wang Z. Adequate is better: particle swarm optimization with limited-information. Appl Math Comput. 2015;268:832–8.
Eusuff MM, Lansey KE. Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag. 2003;129(3):210–25.
Fister I Jr, Yang X-S, Fister I, Brest J, Fister D. A brief review of nature-inspired algorithms for optimization. Elektrotehniški vestnik. 2013;80(3):116–22.
Fong S, Wang X, Qiwen X, Wong R, Fiaidhi J, Mohammed S. Recent advances in metaheuristic algorithms: does the Makara dragon exist? J Supercomput. 2016;72(10):3764–86.
Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. 2012;17(12):4831–45.
García-Martínez C, Gutiérrez PD, Molina D, Lozano M, Herrera F. Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness. Soft Comput. 2017;21(19):5573–83.
He S, Wu QH, Saunders JR. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.
Holland JH. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press; 1975.
Joyce T, Herrmann JM. A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Nature-inspired algorithms and applied optimization. Springer; 2018. p. 27–51.
Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department; 2005.
Kaucic M. A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim. 2013;55(1):165–88.
Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. Acta Mech. 2010;213(3–4):267–89.
Kennedy J. The particle swarm: social adaptation of knowledge. In: IEEE international conference on evolutionary computation. IEEE; 1997. p. 303–8.
Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium (SIS’03). IEEE; 2003. p. 80–7.
Krishnanand KN, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings 2005 IEEE swarm intelligence symposium (SIS 2005). IEEE; 2005. p. 84–91.
Krishnanand KN, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 2009;3(2):87–124.
Lam AYS, Li VOK. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput. 2010;14(3):381–99.
Lane J, Engelbrecht A, Gain J. Particle swarm optimization with spatially meaningful neighbours. In: Proceedings 2008 IEEE swarm intelligence symposium (SIS 2008). IEEE; 2008. p. 1–8.
Lemke C, Budka M, Gabrys B. Metalearning: a survey of trends and technologies. Artif Intell Rev. 2015;44(1):117–30.
Li K, Malik J. Learning to optimize. In: 5th International conference on learning representations; 2017.
Lones MA. Metaheuristics in nature-inspired algorithms. In: Proceedings of the companion publication of the 2014 annual conference on genetic and evolutionary computation. ACM; 2014. p. 1419–22.
Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecol Inf. 2006;1(4):355–66.
Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput. 2004;8(3):204–10.
Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst. 2015a;89:228–49.
Pan W-T. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst. 2012;26:69–74.
Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 2002;22(3):52–67.
Pedersen MEH, Chipperfield AJ. Simplifying particle swarm optimization. Appl Soft Comput. 2010;10(2):618–28.
Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M. The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier; 2006. p. 454–459.
Piotrowski AP. Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions. Inf Sci. 2015;297:191–201.
Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design. 2011;43(3):303–15.
Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.
Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput. 2004;8(3):240–55.
Ray T, Liew KM. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput. 2003;7(4):386–96.
Shah-Hosseini H. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput. 2009;1(1–2):71–9.
Shi Y. Brain storm optimization algorithm. In: International conference in swarm intelligence. Springer; 2011. p. 303–9.
Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation (CEC 99), vol. 3. IEEE; 1999. p. 1945–50.
Suganthan PN. Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 congress on evolutionary computation (CEC 99), vol. 3. IEEE; 1999. p. 1958–62.
Sun J, Xu W, Feng B. A global search strategy of quantum-behaved particle swarm optimization. In: IEEE conference on cybernetics and intelligent systems, 2004, vol. 1. IEEE; 2004. p. 111–6.
Swann J, Hammond K. Towards ‘metaheuristics in the large’. In: Proceedings of 11th metaheuristics international conference (MIC 2015); 2015.
Tamura K, Yasuda K. Primary study of spiral dynamics inspired optimization. IEEJ Trans Electr Electron Eng. 2011;6(S1):1116–22.
Tan Y, Zhu Y. Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer; 2010. p. 355–64.
Weyland D. A critical analysis of the harmony search algorithm—how not to solve sudoku. Oper Res Perspect. 2015;2:97–105.
Wichrowska O, Maheswaranathan N, Hoffman MW, Denil M, Colmenarejo SG, Freitas N, Sohl-Dickstein J. Learned optimizers that scale and generalize. In: Proceedings of the 34th international conference on machine learning, vol. 70; 2017.
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.
Xing B, Gao W-J. Innovative computational intelligence: a rough guide to 134 clever algorithms. New York: Springer; 2016.
Yang X-S. Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer; 2009. p. 169–78.
Yang X-S. Nature-inspired metaheuristic algorithms. Cambridge: Luniver Press; 2010.
Yang X-S. Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer; 2012. p. 240–9.
Yang X-S, Deb S. Cuckoo search via lévy flights. In: World congress on nature and biologically inspired computing (NaBIC 2009). IEEE; 2009. p. 210–4.