Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms
Tóm tắt
In recent years, a plethora of new metaheuristic algorithms have explored different sources of inspiration within the biological and natural worlds. This nature-inspired approach to algorithm design has been widely criticised. A notable issue is the tendency for authors to use terminology that is derived from the domain of inspiration, rather than the broader domains of metaheuristics and optimisation. This makes it difficult to both comprehend how these algorithms work and understand their relationships to other metaheuristics. This paper attempts to address this issue, at least to some extent, by providing accessible descriptions of the most cited nature-inspired algorithms published in the last 20 years. It also discusses commonalities between these algorithms and more classical nature-inspired metaheuristics such as evolutionary algorithms and particle swarm optimisation, and finishes with a discussion of future directions for the field.
Từ khóa
Tài liệu tham khảo
Abbass HA. MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation (CEC 2001), vol 1. IEEE; 2001. , p. 207–14.
Aranha C, Campelo F. Evolutionary computation bestiary; 2019. https://github.com/fcampelo/EC-Bestiary (online accessed 9 Oct 2019).
Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of the 2007 congress on evolutionary computation (CEC 2007). IEEE; 2007. p. 4661–7.
Blackwell T, Branke J. Multi-swarm optimization in dynamic environments. In: Workshops on applications of evolutionary computation. Springer; 2004. p. 489–500.
Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Rong Q. Hyper-heuristics: a survey of the state of the art. J Oper Res Soc. 2013;64(12):1695–724.
Chen J, Qin Z, Liu Y, Lu J. Particle swarm optimization with local search. In: International conference on neural networks and brain (ICNN&B’05), vol. 1. IEEE; 2005. p. 481–4.
Chu S-C, Tsai P-W, Pan J-S. Cat swarm optimization. In: Pacific rim international conference on artificial intelligence. Springer; 2006. p. 854–8.
Črepinšek M, Liu S-H, Mernik L. A note on teaching-learning-based optimization algorithm. Inf Sci. 2012;212:79–93.
Črepinšek M, Liu S-H, Mernik L, Mernik M. Is a comparison of results meaningful from the inexact replications of computational experiments? Soft Comput. 2016;20(1):223–35.
Du W, Gao Y, Liu C, Zheng Z, Wang Z. Adequate is better: particle swarm optimization with limited-information. Appl Math Comput. 2015;268:832–8.
Eusuff MM, Lansey KE. Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag. 2003;129(3):210–25.
Fister I Jr, Yang X-S, Fister I, Brest J, Fister D. A brief review of nature-inspired algorithms for optimization. Elektrotehniški vestnik. 2013;80(3):116–22.
Fong S, Wang X, Qiwen X, Wong R, Fiaidhi J, Mohammed S. Recent advances in metaheuristic algorithms: does the Makara dragon exist? J Supercomput. 2016;72(10):3764–86.
Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. 2012;17(12):4831–45.
García-Martínez C, Gutiérrez PD, Molina D, Lozano M, Herrera F. Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness. Soft Comput. 2017;21(19):5573–83.
He S, Wu QH, Saunders JR. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.
Holland JH. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press; 1975.
Joyce T, Herrmann JM. A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Nature-inspired algorithms and applied optimization. Springer; 2018. p. 27–51.
Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department; 2005.
Kaucic M. A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim. 2013;55(1):165–88.
Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. Acta Mech. 2010;213(3–4):267–89.
Kennedy J. The particle swarm: social adaptation of knowledge. In: IEEE international conference on evolutionary computation. IEEE; 1997. p. 303–8.
Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium (SIS’03). IEEE; 2003. p. 80–7.
Krishnanand KN, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings 2005 IEEE swarm intelligence symposium (SIS 2005). IEEE; 2005. p. 84–91.
Krishnanand KN, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 2009;3(2):87–124.
Lam AYS, Li VOK. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput. 2010;14(3):381–99.
Lane J, Engelbrecht A, Gain J. Particle swarm optimization with spatially meaningful neighbours. In: Proceedings 2008 IEEE swarm intelligence symposium (SIS 2008). IEEE; 2008. p. 1–8.
Lemke C, Budka M, Gabrys B. Metalearning: a survey of trends and technologies. Artif Intell Rev. 2015;44(1):117–30.
Li K, Malik J. Learning to optimize. In: 5th International conference on learning representations; 2017.
Lones MA. Metaheuristics in nature-inspired algorithms. In: Proceedings of the companion publication of the 2014 annual conference on genetic and evolutionary computation. ACM; 2014. p. 1419–22.
Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecol Inf. 2006;1(4):355–66.
Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput. 2004;8(3):204–10.
Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst. 2015a;89:228–49.
Pan W-T. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst. 2012;26:69–74.
Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 2002;22(3):52–67.
Pedersen MEH, Chipperfield AJ. Simplifying particle swarm optimization. Appl Soft Comput. 2010;10(2):618–28.
Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M. The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier; 2006. p. 454–459.
Piotrowski AP. Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions. Inf Sci. 2015;297:191–201.
Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design. 2011;43(3):303–15.
Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.
Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput. 2004;8(3):240–55.
Ray T, Liew KM. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput. 2003;7(4):386–96.
Shah-Hosseini H. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput. 2009;1(1–2):71–9.
Shi Y. Brain storm optimization algorithm. In: International conference in swarm intelligence. Springer; 2011. p. 303–9.
Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation (CEC 99), vol. 3. IEEE; 1999. p. 1945–50.
Suganthan PN. Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 congress on evolutionary computation (CEC 99), vol. 3. IEEE; 1999. p. 1958–62.
Sun J, Xu W, Feng B. A global search strategy of quantum-behaved particle swarm optimization. In: IEEE conference on cybernetics and intelligent systems, 2004, vol. 1. IEEE; 2004. p. 111–6.
Swann J, Hammond K. Towards ‘metaheuristics in the large’. In: Proceedings of 11th metaheuristics international conference (MIC 2015); 2015.
Tamura K, Yasuda K. Primary study of spiral dynamics inspired optimization. IEEJ Trans Electr Electron Eng. 2011;6(S1):1116–22.
Tan Y, Zhu Y. Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer; 2010. p. 355–64.
Weyland D. A critical analysis of the harmony search algorithm—how not to solve sudoku. Oper Res Perspect. 2015;2:97–105.
Wichrowska O, Maheswaranathan N, Hoffman MW, Denil M, Colmenarejo SG, Freitas N, Sohl-Dickstein J. Learned optimizers that scale and generalize. In: Proceedings of the 34th international conference on machine learning, vol. 70; 2017.
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.
Xing B, Gao W-J. Innovative computational intelligence: a rough guide to 134 clever algorithms. New York: Springer; 2016.
Yang X-S. Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer; 2009. p. 169–78.
Yang X-S. Nature-inspired metaheuristic algorithms. Cambridge: Luniver Press; 2010.
Yang X-S. Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer; 2012. p. 240–9.
Yang X-S, Deb S. Cuckoo search via lévy flights. In: World congress on nature and biologically inspired computing (NaBIC 2009). IEEE; 2009. p. 210–4.