Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
Tóm tắt
Từ khóa
Tài liệu tham khảo
Clark, 1989, Prediction of relapse or survival in patients with node-negative breast cancer by dna flow cytometry, New Engl. J. Med., 320, 627, 10.1056/NEJM198903093201003
Delen, 2005, Predicting breast cancer survivability, Artif. Intell. Med., 34, 113, 10.1016/j.artmed.2004.07.002
H. Miao, M. Hartman, N. Bhoo-Pathy, S.-C. Lee, N.A. Taib, E.-Y. Tan, P. Chan, K.G.M. Moons, H.S. Wong, J. Goh, S.M. Rahim, C.H. Yip, H.M. Verkooijen, Predicting survival of de novo metastatic breast cancer in asian women: systematic review and validation study, PLoS One 9 (4) (2014). http://dx.doi:10.1371/journal.pone.0093755
Burton, 2004, Missing covariate data within cancer prognostic studies, Br. J. Cancer, 91, 4, 10.1038/sj.bjc.6601907
Jerez, 2010, Missing data imputation using statistical and machine learning methods in a real breast cancer problem, Artif. Intell. Med., 50, 105, 10.1016/j.artmed.2010.05.002
Abreu, 2014, Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data, vol. 41, 1366
Abreu, 2014, Personalizing breast cancer patients with heterogeneous data, vol. 42, 39
2010
Little, 1999, Methods for handling missing values in clinical trials, J. Rheumatol., 26, 1654
P.D. Allison, Missing Data, Sage University Papers Series on Quantitative Applications in the Social Sciences, Thousand Oaks, CA, USA, 2001.
García-Laencina, 2010, Pattern classification with missing data, Neural Comput. Appl., 19, 263, 10.1007/s00521-009-0295-6
Little, 2002
Cismondi, 2013, Missing data in medical databases, Artif. Intell. Med., 58, 63, 10.1016/j.artmed.2013.01.003
Cruz, 2006, Applications of machine learning in cancer prediction and prognosis, Cancer Informatics, 59
Polat, 2007, Breast cancer diagnosis using least square support vector machine, Digit. Signal Process., 17, 694, 10.1016/j.dsp.2006.10.008
Sahan, 2007, A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis, Comput. Biol. Med., 37, 415, 10.1016/j.compbiomed.2006.05.003
Daemen, 2012, Improved modeling of clinical data with kernel methods, Artif. Intell. Med., 54, 103, 10.1016/j.artmed.2011.11.001
Wang, 2014, A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients, Appl. Soft Comput., 20, 15, 10.1016/j.asoc.2013.09.014
Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, 39, 1, 10.1111/j.2517-6161.1977.tb01600.x
Z. Ghahramani, M.I. Jordan, Supervised learning from incomplete data via an EM approach, in: J.D. Cowan, G. Tesauro, J. Alspector (Eds.), Advances in Neural Information Processing Systems, vol. 6, Denver, CO, 1993, pp. 120–127.
Bishop, 2006
Zio, 2007, Imputation through finite gaussian mixture models, Comput. Stat. Data Anal., 51, 5305, 10.1016/j.csda.2006.10.002
Train, 2008, EM algorithms for nonparametric estimation of mixing distributions, J. Choice Model., 1, 40, 10.1016/S1755-5345(13)70022-8
Aha, 1997
Mitchell, 1997
Batista, 2003, An analysis of four missing data treatment methods for supervised learning, Appl. Artif. Intell., 17, 519, 10.1080/713827181
Troyanskaya, 2001, Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520, 10.1093/bioinformatics/17.6.520
García-Laencina, 2009, K nearest neighbours with mutual information for simultaneous classification and missing data imputation, Neurocomputing, 72, 1483, 10.1016/j.neucom.2008.11.026
Dudani, 1976, The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst. Man Cybern., 6, 325, 10.1109/TSMC.1976.5408784
Quinlan, 1993
Kantardzic, 2011
R. Latkowski, High computational complexity of the decision tree induction with many missing attribute values, in: Proceedings of Concurrency, Specification and Programming. CS&P, vol. 22, 2003, pp. 318–325.
Vapnik, 1998
Cristianini, 2000
Scholkopf, 2001
Suykens, 1999, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293, 10.1023/A:1018628609742
Park, 2013, Robust predictive model for evaluating breast cancer survivability, Eng. Appl. Artif. Intell., 26, 2194, 10.1016/j.engappai.2013.06.013
Prentice, 1978, Regression analysis of grouped survival data with application to breast cancer data, Biometrics, 34, 57, 10.2307/2529588
Burke, 1997, Artificial neural networks improve the accuracy of cancer survival prediction, Cancer, 79, 857, 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
Markey, 2006, Impact of missing data in evaluating artificial neural networks trained on complete data, Comput. Biol. Med., 36, 516, 10.1016/j.compbiomed.2005.02.001
Dorri, 2012, Missing value imputation in DNA microarrays based on conjugate gradient method, Comput. Biol. Med., 42, 222, 10.1016/j.compbiomed.2011.11.011
Abawajy, 2013, Predicting cardiac autonomic neuropathy category for diabetic data with missing values, Comput. Biol. Med., 43, 1328, 10.1016/j.compbiomed.2013.07.002
Herring, 2004, Non-ignorable missing covariate data in survival analysis, J. R. Stat. Soc. Ser. C (Appl. Stat.), 53, 293, 10.1046/j.1467-9876.2003.05168.x
J.M. Jerez, I. Molina, J.L. Subirats, L. Franco, Missing data imputation in breast cancer prognosis, in: BioMed׳06: Proceedings of the 24th IASTED International Conference on Biomedical Engineering, 2006, pp. 323–328.