Miscellany on traces in ℓ-adic cohomology: a survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Abbes, The Grothendieck–Ogg–Shafarevich formula for arithmetic surfaces, J. Algebraic Geom., 9 (2000), 529–576.
A. Abbes and T. Saito, Analyse micro-locale ℓ-adique en caractéristique p>0: Le cas d’un trait, math.AG/0602285.
J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math., 86 (1964), 264–261.
A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque, 100 (1982).
P. Berthelot and A. Ogus, Notes on crystalline cohomology, Math. Notes, 21, Princeton Univ. Press, 1978.
S. Bloch, Lectures on Algebraic Cycles, Duke Univ. Math. Ser. IV, 1980.
S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, In: Algebraic Geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, pp.421–450.
A.J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci., 83 (1996), 51–93.
P.-L. del Angel, A remark on the Hodge type of projective varieties of low degree, J. Reine Angew. Math., 449 (1994), 173–177.
P. Deligne and A. Dimca, Filtration de Hodge et par l’ordre du pôle pour les hypersurfaces singulières, Ann. Sci. École Norm. Sup. (4), 23 (1990), 645–656.
P. Deligne and H. Esnault, appendix to [E2].
H. Esnault, Hodge type of subvarieties of $$\mathbb{P}^n$$ of small degrees, Math. Ann., 288 (1990), 549–551.
H. Esnault, Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math., 151 (2003), 317–320.
H. Esnault, Deligne’s integrality theorem in unequal characteristic and rational points over finite fields, preprint, 2004, to appear in Ann. of Math.
H. Esnault and N. Katz, Cohomological divisibility and point count divisibility, Compos. Math., 141 (2005), 93–100.
H. Esnault, M. Nori and V. Srinivas, Hodge type of projective varieties of low degree, Math. Ann., 293 (1992), 1–6.
H. Esnault and D. Wan, Hodge type of the exotic cohomology of complete intersections, C. R. Acad. Sci. Paris, Série I, 336 (2003), 153–157.
K. Fujiwara, Rigid geometry, Lefschetz–Verdier trace formula and Deligne’s conjecture, Invent. Math., 127 (1997), 489–533.
K. Fujiwara, Independence of ℓ for Intersection Cohomology (after Gabber), In: Algebraic Geometry 2000, Azumino, Adv. Stud. Pure Math., 36, 2002, pp. 145–151.
A. Grothendieck, Le groupe de Brauer III : Exemples et compléments, In: Dix Exposés sur la Cohomologie des Schémas, Masson et Cie, North-Holland Pub. Comp., (eds. A. Grothendieck and N. Kuiper), Adv. Stud. Pure Math., 1968, pp. 88–188.
L. Illusie, Théorie de Brauer et caractéristique d’Euler-Poincaré, d’après P. Deligne, Astérisque, 82-83 (1978-79), 161–172.
L. Illusie, On semistable reduction and the calculation of nearby cycles, In: Geometric Aspects of Dwork Theory, (eds. A. Adolphson, F. Baldassarri, P. Berthelot, N. Katz, and F. Loeser), Walter de Gruyter, 2004, pp. 785–803.
K. Kato and T. Saito, On the conductor formula of Bloch, Publ. Math. Inst. Hautes Études Sci., 100 (2004), 5–151.
K. Kato and T. Saito, Ramification theory for varieties over a perfect field, math.AG/0402010.
N. Katz, Affine cohomological transforms, perversity, and monodromy, J. Amer. Math. Soc., 6 (1993), 149–222.
N. Katz and W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 23 (1974), 73–77.
S. Kleiman, Algebraic cycles and the Weil conjectures, In: Dix Exposés sur la Cohomologie des Schémas, Masson et Cie, North-Holland Pub. Comp., 1968, 359–386.
J. Kollár, Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, 1996.
G. Laumon, Comparaison de caractéristiques d’Euler-Poincaré en cohomologie ℓ-adique, C. R. Acad. Sci. Paris, Série I, 292 (1981), 209–212.
R. Pink, On the calculation of local terms in the Lefschetz-Verdier trace formula and its application to a conjecture of Deligne, Ann. of Math., 135 (1992), 483–525.
R. Pink, The Mumford-Tate conjecture for Drinfeld-modules, Publ. Res. Inst. Math. Sci., 33 (1997), 393–425.
M. Raynaud, Caractéristique d’Euler–Poincaré d’un faisceau et cohomologie des variétés abéliennes, Sém. Bourbaki 1964/65, In: Dix Exposés sur la Cohomologie des Schémas, North-Holland Pub. Comp., Amsterdam, Masson et Cie, Paris, 286, 1968.
T. Saito, Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), 555–578.
T. Saito, Parity in Bloch’s conductor formula in even dimension, J. Théor. Nombres Bordeaux, 16 (2004), 403–421.
T. Saito, Weight spectral sequences and independence of ℓ, J. Inst. Math. Jussieu, 2 (2003), 583–634.
J-P. Serre, Zeta and L functions, In: Arithmetical Algebraic Geometry, Proc. of a Conference held at Purdue Univ., Dec. 5-7, 1963, (ed. O. Schilling), Harper and Row, 1965, 82–92 (= [Se Oe, 64]).
J-P. Serre, Représentations Linéaires des Groupes Finis, 3ème édition corrigée, Hermann, 1978.
J-P. Serre, Arithmetic Groups, In: Homological Group Theory, C.T.C. Wall edit., London Math. Soc. Lecture Notes Ser., 36, Cambridge Univ. Press, 1979, pp. 77–169 (= [Se Oe,120]).
J-P. Serre, Bounds for the orders of finite subgroups of reductive groups, in Group Representation Theory, (eds. M. Geck, D. Testerman and J. Thévenaz.), EPFL Press, Lausanne, to appear.
Y. Varshavsky, Lefschetz–Verdier trace formula and a generalization of a theorem of Fujiwara, May 2005, math.AG/0505564.
E. Warning, Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 76–83.
A. Grothendieck avec J. Dieudonné, Éléments de Géométrie Algébrique: II, Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci., 8 (1961).
A. Grothendieck, Cohomologie l-adique et Fonctions L, Séminaire de géométrie algébrique du Bois-Marie 1965-66, Lecture Notes in Math., 589, Springer-Verlag, 1977.
A. Grothendieck, P. Deligne et N. Katz, Groupes de Monodromie en Géométrie Algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967-1969, I, II, Lecture Notes in Math., 288, 340, Springer-Verlag, 1972-1973.