Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design

Vicky Choi1
1Department of Computer Science, Virginia Tech, 7054 Haycock Road, Falls Church, VA, 22043, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th FOCS, pp. 42–51 (2004)

Alon, N., Capalbo, M.: Optimal universal graphs with deterministic embedding. In: Proceedings of the 19th SODA (2008)

Bodlaender H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

Boros E., Hammer P.: Pseudo-boolean optimization. Discrete Appl. Math 123, 155–225 (2002)

Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of quadratic unconstrained binary optimization. Technical report RRR 10-2006, RUTCOR research report (2006)

Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209, (2008). Available at arXiv:quant-ph/0804.4884

Choi, V.: Systems, devices and methods for analog processing. US Patent Application US2009/0121215, May 14, (2009)

Das A., Chakrabarti B.K.: Quantum annealing and analog quantum computations. Rev. Mod. Phys. 80, 1061–1081 (2008)

Diestel R.: Graph Theory. Springer, Heidelberg (2005)

D-Wave Systems Inc.: 100-4401 Still Creek Dr., Burnaby, V5C 6G9, BC, Canada. http://www.dwavesys.com/

Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106 (2000)

Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–476 (2001)

Harris, R., Johansson, J., Berkley, A.J., Johnson, M.W., Lanting, T., Han, S. et al.: Experimental Demonstration of a Robust and Scalable Flux Qubit. arXiv:quant-ph/0909.4321, (2009)

Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. Quantum Computing and Quantum Bits in Mesoscopic Systems, (2004)

Kaminsky, W.M., Lloyd, S., Orlando, T.P.: Scalable Superconducting Architecture for Adiabatic Quantum Computation. arXiv.org:quant-ph/0403090, (2004)

Kleinberg, J.M., Rubinfeld, R.: Short paths in expander graphs. In: Proceedings of the 37th FOCS (1996)

Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)

Mizel A., Lidar D.A., Mitchell M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)

Rezakhani A.T., Kuo W.-J., Hamma A., Lidar D.A., Zanardi P.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)

Robertson N., Seymour P.D.: Graph minors. xiii: the disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)

Rose, G., Bunyk, P., Coury, M.D., Macready, W., Choi, V.: Systems, Devices, and Methods For Interconnected Processor Topology. US Patent Application US2008/0176750, July 24, (2008)

Thomson L.F.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)