Minkowski-type and Alexandrov-Type Theorems for Polyhedral Herissons

Geometriae Dedicata - Tập 107 - Trang 169-186 - 2004
Victor Alexandrov1
1Sobolev Institute of Mathematics, Russia

Tóm tắt

Classical H. Minkowski theorems on existence and uniqueness of convex polyhedra with prescribed directions and areas of faces as well as the well-known generalization of H. Minkowski uniqueness theorem due to A.D. Alexandrov are extended to a class of nonconvex polyhedra which are called polyhedral herissons and may be described as polyhedra with injective spherical image.

Tài liệu tham khảo

Alexandrov, A. D.: Konvexe Polyeder, Akademie-Verlag Berlin, 1958. Blaschke, W.: Kreis und Kugel, Walter de Gruyter, Berlin, 1956. Cauchy, A.: Sur les polygons et polye`dres, Second Me ´moire, J. Ecole Polyte ´chnique 9 (1813), 87–98. Langevin, R., Levitt, G. and Rosenberg, H.: He ´rissones et multihe ´rissons (enveloppes parametree ´s par leur application de Gauss). Singularities, Banach Center Publ. 20 (1988), 245–253. Minkowski, H.: Allgemeine Lehrsa ¨tze u ¨ber die convexen Polyeder, Go ¨tt. Nachr. (1897), 198–219. Martinez-Maure, Y.: Sur les he ´rissons projectifs (enveloppes parame ´tre ´es par leur application de Gauss), Bull. Sci. Math. 121(8) (1997), 585–601. Martinez-Maure, Y.: Hedgehogs of constant width and equichordal points, Ann. Pol. Math. 67 (3) (1997), 285–288. Martinez-Maure, Y.: Geometric inequalities for plane hedgehogs, Demonstr. Math. 32(1) (1999), 177–183. Martinez-Maure, Y.: De nouvelles ine ´galite ´sge ´ome ´triques pour les he ´rissons, Arch. Math. 72(6) (1999), 444–453. Martinez-Maure, Y.: Indice d' un he ´risson: E ´tude et applications, Publ. Mat. Barc. 44(1) (2000), 237–255. Martinez-Maure, Y.: Hedgehogs and zonoids, Adv. Math. 158(1) (2001), 1–17. Martinez-Maure, Y.: A fractal projective hedgehog, Demonstr. Math. 34(1) (2001), 59–63. Martinez-Maure, Y.: Contre-exemple a`une caracte ´risation conjecture ´e de la sphe`re, C. R. Acad. Sci. Paris Se ´r. I Math. 332(1) (2001), 41–44. McMullen, P.: The polytope algebra, Adv. Math. 78 (1) (1989), 76–130. Morelli, R.: A theory of polyhedra, Adv. Math. 97 (1) (1993), 1–73. Panina, G. Yu.: Virtual polytopes and classical problems of geometry, St. Petersbg. Math. J. 14(5) (2003), 823–834. Pukhlikov, A. V. and Khovanskij, A. G.: Finitely additive measures of virtual polytopes, St. Petersbg. Math. J. 4(2) (1993), 337–356. Rodrigues, L. and Rosenberg, H.: Rigidity of certain polyhedra in R 3, Comment. Math. Helv. 75 (3) (2000), 478–503. Roitman, P.: One-periodic Bryant surfaces and rigidity for generalized polyhedra. PhD Thesis, Universite ´Paris 7, Paris, 2001. Schattschneider, D. and Senechal, M.: Tilings, In: J. Goodman (ed. ), Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton, FL, 1997, pp. 43–62. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory, Cambridge University Press, Cambridge, 1993. Stachel, H.: Flexible cross-polytopes in the Euclidean 4-space, J. Geom. Graph. 4 (2) (2000), 159–167. Stoker, J. J.: Geometrical problems concerning polyhedra in the large, Comm. Pure Appl. Math. 21 (1968), 119–168.