MiningZinc: A declarative framework for constraint-based mining

Artificial Intelligence - Tập 244 - Trang 6-29 - 2017
Tias Guns1, Anton Dries1, Siegfried Nijssen1,2, Guido Tack3, Luc De Raedt1
1Department of Computer Science, KU Leuven, Belgium
2LIACS, Universiteit Leiden, Netherlands
3Faculty of IT, Monash University, National ICT Australia (NICTA), Australia

Tài liệu tham khảo

De Raedt, 2011, Constraint programming meets machine learning and data mining (Dagstuhl seminar 11201), Dagstuhl Rep., 1, 61 Han, 2000 Marriott, 2008, The design of the Zinc modelling language, Constraints, 13, 229, 10.1007/s10601-008-9041-4 Frisch, 2008, Essence: a constraint language for specifying combinatorial problems, Constraints, 13, 268, 10.1007/s10601-008-9047-y Van Hentenryck, 1999 Nethercote, 2007, MiniZinc: towards a standard CP modelling language, vol. 4741, 529 Stuckey, 2013, MiniZinc with functions, vol. 7874, 268 Guns, 2011, Itemset mining: a constraint programming perspective, Artif. Intell., 175, 1951, 10.1016/j.artint.2011.05.002 Guns, 2013, MiningZinc: a modeling language for constraint-based mining, 1365 Agrawal, 1993, Mining association rules between sets of items in large databases, 207 2014 Mannila, 1997, Levelwise search and borders of theories in knowledge discovery, Data Min. Knowl. Discov., 1, 241, 10.1023/A:1009796218281 Bonchi, 2007, Extending the state-of-the-art of constraint-based pattern discovery, Data Knowl. Eng., 60, 377, 10.1016/j.datak.2006.02.006 Boulicaut, 2010, Constraint-based data mining, 339 Rossi, 2006, Handbook of Constraint Programming Stuckey, 2010, Philosophy of the MiniZinc challenge, Constraints, 15, 307, 10.1007/s10601-010-9093-0 Vreeken, 2011, Krimp: mining itemsets that compress, Data Min. Knowl. Discov., 23, 169, 10.1007/s10618-010-0202-x Pasquier, 1999, Discovering frequent closed itemsets for association rules, vol. 1540, 398 Chan, 2003, Mining high utility itemsets, 19 Chui, 2007, Mining frequent itemsets from uncertain data, 47 Novak, 2009, Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining, J. Mach. Learn. Res., 10, 377 Fürnkranz, 2005, ROC ‘n’ rule learning – towards a better understanding of covering algorithms, Mach. Learn., 58, 39, 10.1007/s10994-005-5011-x Nijssen, 2011, Constraint-based pattern mining in multi-relational databases, 1120 Guns, 2013, k-Pattern set mining under constraints, IEEE Trans. Knowl. Data Eng., 25, 402, 10.1109/TKDE.2011.204 Khiari, 2011, A generic approach for modeling and mining n-ary patterns, 300 Uno, 2004, LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets, vol. 126 Elmasri, 2010 Kotthoff, 2014, Algorithm selection for combinatorial search problems: a survey, AI Mag., 35, 48 Schulte Opturion van Omme, 2014 Borgelt, 2012, Frequent item set mining, WIREs Data Min. Knowl. Discov., 2, 437, 10.1002/widm.1074 Liu, 2012, Mining high utility itemsets without candidate generation, 55 Fournier-Viger Nijssen, 2009, Correlated itemset mining in ROC space: a constraint programming approach, 647 Frank Goethals, 2004, Advances in frequent itemset mining implementations: report on FIMI'03, 109 Mannila, 1997, Inductive databases and condensed representations for data mining, 21 Meo, 1996, A new SQL-like operator for mining association rules, 122 Imielinski, 1999, MSQL: a query language for database mining, Data Min. Knowl. Discov., 3, 373, 10.1023/A:1009816913055 Blockeel, 2012, An inductive database system based on virtual mining views, Data Min. Knowl. Discov., 24, 247, 10.1007/s10618-011-0229-7 Järvisalo, 2011, Itemset mining as a challenge application for answer set enumeration, vol. 6645, 304 Métivier, 2012, A constraint language for declarative pattern discovery, 119 Henriques Coquery, 2012, A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence, vol. 242, 258 Järvisalo, 2011, Itemset mining as a challenge application for answer set enumeration, 304 Jabbour, 2013, Boolean satisfiability for sequence mining, 649 Coquery, 2011, A constraint programming approach for enumerating motifs in a sequence, 1091 Kemmar, 2014, Mining relevant sequence patterns with CP-based framework, 552 Métivier, 2013, A constraint programming approach for mining sequential patterns in a sequence database Jabbour, 2013, The top-k frequent closed itemset mining using top-k SAT problem, 403 Ugarte, 2014, Soft threshold constraints for pattern mining Negrevergne, 2013, Dominance programming for itemset mining, 557 Métivier, 2012, Constrained clustering using SAT, 207 Duong, 2013, A declarative framework for constrained clustering, 419 Van Hentenryck, 2005 Flener, 2003, Introducing ESRA, a relational language for modelling combinatorial problems, vol. 3018, 214 Frisch, 2005, The rules of constraint modelling, 109 Frisch R. Becket, S. Brand, M. Brown, G.J. Duck, T. Feydy, J. Fischer, J. Huang, K. Marriott, N. Nethercote, J. Puchinger, R. Rafeh, P.J. Stuckey, G. Wallace, The many roads leading to Rome: solving Zinc models by various solvers, 2008. Huang, 2008, Universal Booleanization of constraint models, vol. 5202, 144 Bofill Duck, 2008, Cadmium: an implementation of ACD term rewriting, vol. 5366, 531 Frühwirth, 2009 Ajili, 2004, Hybrid problem solving in eclipse, vol. 27, 169 Focacci, 2004, Exploiting relaxations in cp, vol. 27, 137 Achterberg, 2008, Constraint integer programming: a new approach to integrate cp and mip, vol. 5015, 6 Wallace, 2007, Hybrid algorithms in constraint programming, vol. 4651, 1