Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alt, 1987, Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise, Geol. Soc. Am. Bull., 98, 157, 10.1130/0016-7606(1987)98<157:HSAODO>2.0.CO;2
Amann, 1985, Development of ocean mining in the Red Sea, Mar. Min., 5, 103
Arquit, 1990, Geological and hydrothermal controls on the distribution of megafauna in Ashes Vent Field, Juan de Fuca Ridge, J. Geophys. Res.-Solid Earth Planets, 95, 12947, 10.1029/JB095iB08p12947
Bachraty, 2009, Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale, Deep-Sea Res. Part I-Oceanogr. Res. Pap., 56, 1371, 10.1016/j.dsr.2009.01.009
Bäcker, 1972, New deeps with brines and metalliferous sediments in the Red Sea, Nat. Phys. Sci., 240, 153, 10.1038/physci240153a0
Baco, 2010, Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin, Mar. Geol., 272, 251, 10.1016/j.margeo.2009.06.015
Baker, 2004, On the global distribution of hydrothermal vent fields, 245
Beaulieu, 2010
Binns, 1993, Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea, Econ. Geol., 88, 2226, 10.2113/gsecongeo.88.8.2226
Black, 1994, Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the Eastern Pacific, Mar. Biol., 120, 33, 10.1007/BF00381939
Both, 1986, Hydrothermal chimneys and associated fauna in the Manus Back-Arc Basin, Papua New Guinea, EOS Trans. AGU, 67, 489, 10.1029/EO067i021p00489
Cavanaugh, 1981, Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts, Science, 213, 340, 10.1126/science.213.4505.340
Collins, 2012, A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent fauna, Mar. Ecol.-Prog. Ser., 452, 89, 10.3354/meps09646
Collins, 2013, A primer for the environmental impact assessment of mining at seafloor massive sulfide deposits, Mar. Policy, 42, 198, 10.1016/j.marpol.2013.01.020
Collins, 2013, VentBase: developing a consensus among stakeholders in the deep-sea regarding environmental impact assessment for deep-sea mining, Mar. Policy, 42, 334, 10.1016/j.marpol.2013.03.002
Connelly, 2012, Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre, Nat. Commun., 3, 620, 10.1038/ncomms1636
Corliss, 1979, Submarine thermal springs on the Galápagos Rift, Science, 203, 1073, 10.1126/science.203.4385.1073
Corliss, 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth, Oceanol. Acta, 4, 59
Coykendall, 2011, Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents, BMC Evol. Biol., 11, 10.1186/1471-2148-11-96
Craig, 1986, Hydrothermal vents in the Mariana Trough: results of the first Alvin dives, EOS (Trans., Am. Geophys. Union), 68, 1531
Crawford, 1984, Geotechnical engineering properties of deep-ocean polymetallic sulfides from 21°N, East Pacific Rise, Mar. Min., 4, 337
Decision of the Assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for polymetallic sulphides in the area (2010)
Desbruyéres, 2006, 544
Devey, 2007, Responsible science at hydrothermal vents, Oceanography, 20, 162, 10.5670/oceanog.2007.90
Emery, 1977, Mineral deposits of the deep-ocean floor, Mar. Min., 1, 1
Endeavour Hydrothermal Vents Marine Protected Area Management Plan 2010–2015. Available at: http://www.pac.dfo-mpo.gc.ca/oceans/protection/mpa-zpm/endeavour/docs/EHV-CHE-mgmtplan-gestion-eng.pdf (accessed 15.03.13).
Erickson, 2009, Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin), Deep-Sea Res. Part II-Trop. Stud. Oceanogr., 56, 1577, 10.1016/j.dsr2.2009.05.002
Exclusive Economic Zone and Continental Shelf (Environmental Effects) Act 2012. Available at: http://www.legislation.govt.nz/act/public/2012/0072/latest/DLM3955428.html (accessed 15.03.13).
Felbeck, 1981, Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila jones (vestimentifera), Science, 213, 336, 10.1126/science.213.4505.336
Fouquet, 1991, Hydrothermal activity and metallogenesis in the Lau back-arc basin, Nature, 349, 778, 10.1038/349778a0
Fouquet, 1994, A detailed study of the lucky strike hydrothermal site and discovery of a new hydrothermal site: Menez Gwen: preliminary results of the DIVA1 Cruise (5–29 May, 1994), InterRidge News, 14
Francheteau, 1979, Basaltic pillars in collapsed lava-pools on the deep ocean-floor, Nature, 281, 209, 10.1038/281209a0
Fukushima, 2010, Current issues in seafloor massive sulfide mining development
Galkin, 1997, Megafauna associated with hydrothermal vents in the manus back-arc basin (Bismarck Sea), Mar. Geol., 142, 197, 10.1016/S0025-3227(97)00051-0
Gardner, 2010, 1
Glasby, 1990, Marine mineral potential in New Zealand's exclusive economic zone, Mar. Min., 9, 403
Grassle, 1985, Hydrothermal vent animals: distribution and biology, Science, 229, 713, 10.1126/science.229.4715.713
Green, 1979
Gwyther, 2008
Gwyther, 2008
Halbach, 1989, Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin, Nature, 338, 496, 10.1038/338496a0
Halbach, 1998, Formation and decay of a modern massive sulfide deposit in the Indian ocean, Miner. Depos., 33, 302, 10.1007/s001260050149
Hannington, 1988, Gold and silver potential of polymetallic sulfide deposits on the sea floor, Mar. Min., 7
Hannington, 1986, Gold in sea-floor polymetallic sulfide deposits, Econ. Geol., 81, 1867, 10.2113/gsecongeo.81.8.1867
Hannington, 2002
Hannington, 2011, The abundance of seafloor massive sulfide deposits, Geology, 39, 1155, 10.1130/G32468.1
Haymon, 1993, Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991, Earth Planet. Sci. Lett., 119, 85, 10.1016/0012-821X(93)90008-W
Herzig, 1988, Exploration for hydrothermal activity near the Rodriguez triple junction, Indian Ocean, Can. Mineral., 26, 721
Hoagland, 2010, Deep-sea mining of seafloor massive sulfides, Mar. Policy, 34, 728, 10.1016/j.marpol.2009.12.001
Humphris, 1995, The internal structure of an active sea-floor massive sulfide deposit, Nature, 377, 713, 10.1038/377713a0
Hunt, 2004, Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9°50′N), 51, 225
Independent State of Papua New Guinea Department of Environment and Conservation Legislation [Online]. Independent State of Papua New Guinea Department of Environment and Conservation. Available at: http://www.dec.gov.pg/legislation.html (accessed 15.03.13).
2011
International Seabed Authority, 2004. Polymetallic sulphides and cobalt-rich ferromanganese crusts deposits. In: Establishment of Environmental Baselines and an Associated Monitoring Programme during Exploration, International Seabed Authority Workshop, Kingston, Jamaica.
International Seabed Authority, 2010, Decision of the Assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for polymetallic sulphides in the Area
2011, Environmental Management Needs for Exploration and Exploitation of Deep Sea Minerals
2011, Environmental Management of Deep-Sea Chemosynthetic Ecosystems: Justification of and Considerations for a Spatially-based Approach
2009
Jones, 1981, Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galápagos Rift, Science, 213, 333, 10.1126/science.213.4505.333
Karl, 1980, Deep-sea primary production at the Galápagos hydrothermal vents, Science, 207, 1345, 10.1126/science.207.4437.1345
Kastner, 1986, Hydrothermal deposition in the Mariana trough: preliminary mineralogical investigation, EOS (Trans., Am. Geophys. Union), 68, 1531
Kelly, 2008, Diversity of invertebrate colonists on simple and complex substrates at hydrothermal vents on the Juan de Fuca Ridge, Aquat. Biol., 3, 271, 10.3354/ab00085
Kelly, 2007, Spatial and temporal patterns of colonization by deep-sea hydrothermal vent invertebrates on the Juan de Fuca Ridge, NE Pacific, Aquat. Biol., 1, 1, 10.3354/ab00001
Kong, 1985, Bare-rock drill sites, O.D.P. legs 106 and 109: evidence for hydrothermal activity at 23°N on the Mid-Atlantic Ridge, EOS (Trans., Am. Geophys. Union), 66, 936
Krasnov, 1995, Detailed geological studies of hydrothermal fields in the North Atlantic, Geol. Soc., Lond., Spec. Public., 87, 43, 10.1144/GSL.SP.1995.087.01.05
Lonsdale, 1980, A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center, Earth Planet. Sci. Lett., 49, 8, 10.1016/0012-821X(80)90144-2
Lutz, 1993, Ecology of deep-sea hydrothermal vent communities – a review, Rev. Geophys., 31, 211, 10.1029/93RG01280
Malahoff, 2008
Marsh, 2001, Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents, Nature, 411, 77, 10.1038/35075063
Marsh, 2012, Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean, PloS One, 7, e48348, 10.1371/journal.pone.0048348
Metaxas, 2004, Spatial and temporal patterns in larval supply at hydrothermal vents in the Northeast Pacific Ocean, Limnol. Oceanogr., 49, 1949, 10.4319/lo.2004.49.6.1949
Metaxas, 2011, Spatial patterns of larval abundance at hydrothermal vents on seamounts: evidence for recruitment limitation, Mar. Ecol.-Progr. Ser., 437, 103, 10.3354/meps09283
Miljutin, 2011, Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific), Deep-Sea Res. Part I, 58, 885, 10.1016/j.dsr.2011.06.003
Mining Act 1992 and Regulation. Available at: http://www.mra.gov.pg/Portals/2/Publications/MINING_ACT%201992.pdf (accessed 15.03.13).
Ministry of Economic Development. Current Permits NZ Petroleum and Minerals [Online]. Ministry of Economic Development. Available at: http://www.nzpam.govt.nz/cms/online-services/current-permits/ (accessed 15.03.13).
Mironov, 1998, Biogeography patterns of the hydrothermal vent fields: a comparison with non-vent biogeography, Cah. Biol. Mar., 39, 367
Moalic, 2012, Biogeography revisited with network theory: retracing the history of hydrothermal vent communities, Syst. Biol., 61, 127, 10.1093/sysbio/syr088
Mottl, 1994
Mullineaux, 2010, Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption, 107, 7829
Murton, 1995, Geological setting and ecology of the Broken Spur hydrothermal vent field: 29 degree 10 minute N on the Mid-Atlantic Ridge, Geol. Soc. Spec. Public., 87, 33, 10.1144/GSL.SP.1995.087.01.04
Nautilus Minerals Inc. Home Page [Online]. Nautilus Minerals Inc. Available at: http://www.nautilusminerals.com/s/Home.asp (accessed 15.03.13).
Plüger, 1990, Discovery of hydrothermal fields at the Central Indian Ridge, Mar. Min., 9, 73
Reisser, 2011, Connectivity, small islands and large distances: the Cellana strigilis limpet complex in the Southern Ocean, Mol. Ecol., 20, 3399, 10.1111/j.1365-294X.2011.05185.x
Reynolds, 2010, New molluscan larval form: brooding and development in a hydrothermal vent gastropod, Ifremeria nautilei (Provannidae), Biol. Bull. (Woods Hole), 219, 7, 10.1086/BBLv219n1p7
Rogers, 2012, The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography, PLoS Biol., 10, e1001234, 10.1371/journal.pbio.1001234
Rona, 1986, Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge, Nature, 321, 33, 10.1038/321033a0
Rona, 1985, Hydrothermal mineralization at slow-spreading centers: Red Sea, Atlantic Ocean and Indian Ocean, Mar. Min., 5, 117
de Ronde, 2001, Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand, Earth Planet. Sci. Lett., 193, 359, 10.1016/S0012-821X(01)00534-9
de Ronde, 2011, Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand, Miner. Depos., 46, 541, 10.1007/s00126-011-0345-8
Shank, 2007, Toward a mechanistic understanding of larval dispersal: insights from genomic fingerprinting of the deep-sea hydrothermal vent tubeworm Riftia pachyptila, Mar. Ecol.-Evol. Persp., 28, 25, 10.1111/j.1439-0485.2007.00146.x
Spiess, 1980, East Pacific Rise: hot springs and geophysical experiments, Science, 207, 1421, 10.1126/science.207.4438.1421
Stoffers, 1999, Little-studied arc-backarc system in the spotlight, EOS (Trans., Am. Geophys. Union), 80, 353, 10.1029/EO080i032p00353-01
Stöhr, 2005, Deep-sea ophiuroids (Echinodermata) from reducing and non-reducing environments in the North Atlantic Ocean, J. Mar. Biol. Assoc. U K, 85, 383, 10.1017/S0025315405011318h
Sudarikov, 1995, Geochemistry of the Snake Pit vent field and its implications for vent and non-vent fauna, 319
Thaler, 2011, The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermalvent gastropod from the southwest Pacific, BMC Evol. Biol., 11, 12, 10.1186/1471-2148-11-372
Tolstoy, 2006, A sea-floor spreading event captured by seismometers, Science, 314, 1920, 10.1126/science.1133950
Tunnicliffe, 1997, Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge, Deep-Sea Res. Part I-Oceanogr. Res. Pap., 44, 1627, 10.1016/S0967-0637(97)00041-1
Tunnicliffe, 1998, A biogeographical perspective of the deep-sea hydrothermal vent fauna, 353, 10.1016/S0065-2881(08)60213-8
Tunnicliffe, 1997, 105
Tyler, 2003, Dispersal at hydrothermal vents: a summary of recent progress, Hydrobiologia, 503, 9, 10.1023/B:HYDR.0000008492.53394.6b
Tyler, 1995, A new genus of ophiuroid (Echonidermata: Ophiuroidea) from hydrothermal mounds along the Mid-Atlantic Ridge, J. Mar. Biol. Assoc. U K, 75, 977, 10.1017/S0025315400038303
Underwood, 1991, Beyond BACI: Experimental designs for detecting human environmental impacts on temporal variations in natural populations, Mar. Freshw. Res., 42, 569, 10.1071/MF9910569
Underwood, 1992, Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world, J. Exp. Mar. Biol. Ecol., 161, 145, 10.1016/0022-0981(92)90094-Q
United Nations Environment Programme. Rio Declaration on Environment and Development [Online]. United Nations Environment Programme. Available at: http://www.unep.org/documents.multilingual/default.asp?documentid=78&articleid=1163 (accessed 19.12.12).
United Nations Environment Programme. Declaration of the United Nations Conference on the Human Environment [Online]. United Nations Environment Programme. Available at: http://www.unep.org/Documents.Multilingual/Default.asp?documentid=97&articleid=1503 (accessed 19.12.12).
2012
United Nations. Report of the World Summit on Sustainable Development. Available at: http://daccess-dds-ny.un.org/doc/UNDOC/GEN/N02/636/93/PDF/N0263693.pdf?OpenElement (accessed 04.04.13).
United Nations. United Nations Convention on the Law of the Sea. Available at: http://www.un.org/Depts/los/convention_agreements/texts/unclos/unclos_e.pdf.
Van Dover, 1990
Van Dover, 2002, Evolution and biogeography of deep-sea vent and seep invertebrates, Science, 295, 1253, 10.1126/science.1067361
Van Dover, 2003, Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem, Deep-Sea Res. Part I-Oceanogr. Res. Pap., 50, 281, 10.1016/S0967-0637(02)00162-0
Van Dover, 2012, Designating networks of chemosynthetic ecosystem reserves in the deep sea, Mar. Policy, 36, 378, 10.1016/j.marpol.2011.07.002
Van Dover, 2000
Van Dover, 2007, The biological environment of polymetallic sulphides deposits, the potential impact of exploration and mining on this environment, and data required to establish environmental baselines in exploration areas, 169
Van Dover, 2011, Mining seafloor massive sulphides and biodiversity: what is at risk?, ICES J. Mar. Sci., 68, 341, 10.1093/icesjms/fsq086
VentBase 2012: Standardising Ecological Assessments for Hydrothermal Vent Ecosystems [Online]. Available at: http://www.ventbase.org/ (accessed 15.03.13).
Von Damm, 1990, Seafloor hydrothermal activity: black smoker chemistry and chimneys, Annu. Rev. Earth Planet. Sci., 18, 173, 10.1146/annurev.ea.18.050190.001133
Vrijenhoek, 1997, Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals, J. Hered., 88, 285, 10.1093/oxfordjournals.jhered.a023106
Wei, 2013, Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment, Mar. Biol., 10.1007/s00227-012-2145-9
Williams, 2010, Seamount megabenthic assemblages fail to recover from trawling impacts, Mar. Ecol., 31, 183, 10.1111/j.1439-0485.2010.00385.x
Wolff, 2005, Composition and endemism of the deep-sea hydrothermal vent fauna, Cah. Biol. Mar., 46, 97
Wright, 1998, Discovery of hydrothermal sulfide mineralization from southern Kermadec arc volcanoes (SW Pacific), Earth Planet. Sci. Lett., 164, 335, 10.1016/S0012-821X(98)00225-8
Zierenberg, 1996, The roots of seafloor sulphide deposits: preliminary results from ODP Leg 169 drilling in Middle Valley and Escanaba Trough, Am. Geophys. Union Trans., 77, 765