Minimum cycle factors in quasi-transitive digraphs
Tài liệu tham khảo
Bang-Jensen, 2001
Bang-Jensen, 1998, A polynomial algorithm for the hamiltonian cycle problem in semicomplete multipartite digraphs, J. Graph Theory, 29, 111, 10.1002/(SICI)1097-0118(199810)29:2<111::AID-JGT7>3.0.CO;2-U
Bang-Jensen, 2006, Finding cheapest cycles in vertex-weighted quasi-transitive and extended semicomplete digraphs, Discrete Optim., 3, 86, 10.1016/j.disopt.2005.11.001
Bang-Jensen, 2005, Finding complementary cycles in locally semicomplete digraphs, Discrete Appl. Math., 146, 245, 10.1016/j.dam.2004.10.002
Bang-Jensen, 1995, Quasi-transitive digraphs, J. Graph Theory, 20, 141, 10.1002/jgt.3190200205
Bang-Jensen, 2003, Strongly connected spanning subgraphs with the minimum number of arcs in quasi-transitive digraphs, SIAM J. Discrete Math., 16, 335, 10.1137/S0895480199354220
Guo, 1994, On complementary cycles in locally semicomplete digraphs, Discrete Math., 135, 121, 10.1016/0012-365X(93)E0099-P
Gutin, 1988, Characterization of complete n-partite digraphs that have a hamiltonian path, Kibernika (Kiev), 1, 107
Gutin, 1984, Criterion for complete bipartite digraphs to be hamiltonian, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 1, 109
Gutin, 1994, Polynomial algorithms for finding paths and cycles in quasi-transitive digraphs, Australas. J. Combin., 10, 231
Gutin, 1995, Characterizations of vertex pancyclic and pancyclic ordinary complete multipartite digraphs, Discrete Math., 141, 153, 10.1016/0012-365X(93)E0195-A
H. Li, J. Shu, The partition of a strong tournament, Rapport de Recherce No. 1306, LRI Universite Paris SUD, 2002
Reid, 1985, Two complementary circuits in two-connected tournaments, vol. 27, 321
Song, 1993, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B, 57, 18, 10.1006/jctb.1993.1002