Minimizing the expected makespan of a project with stochastic activity durations under resource constraints

Stefan Creemers1
1IESEG School of Management, Rue de la digue 3, 59000, Lille, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ashtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing. Journal of Scheduling, 14(2), 157–171.

Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of Scheduling, 10(3), 153–166.

Ballestín, F., & Leus, R. (2009). Resource-constrained project scheduling for timely project completion with stochastic activity durations. Production and Operations Management, 18(4), 459–474.

Bidot, J., Vidal, T., Laborie, P., & Beck, J. C. (2009). A theoretic and practical framework for scheduling in a stochastic environment. Journal of Scheduling, 12(3), 315–344.

Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic project networks. Operations Research, 45(1), 126–139.

Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian PERT networks to maximize the net present value. Operations Research Letters, 38(1), 51–56.

Creemers, S., Demeulemeester, E., & Van de Vonder, S. (2014). A new approach for quantitative risk analysis. Annals of Operations Research, 213(1), 27–65.

Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: A research handbook. AH Dordrecht: Kluwer Academic Publishers Group.

Fu, N., Lau, H. C., Varakantham, P., & Xiao, F. (2012). Robust local search for solving RCPSP/max with durational uncertainty. Journal of Artificial Intelligence Research, 43, 43–86.

Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project scheduling with non-consumable limited resources. International Journal of Production Economics, 48(1), 29–37.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306.

Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13(1), 1–28.

Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project scheduling problem library. European Journal of Operational Research, 96(1), 205–216.

Kulkarni, V., & Adlakha, V. (1986). Markov and Markov-regenerative PERT networks. Operations Research, 34(5), 769–781.

Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. Philadelphia: American Statistical Association and the Society for Industrial and Applied Mathematics.

Möhring, R. H. (2000). Scheduling under uncertainty: Optimizing against a randomizing adversary. Lecture Notes in Computer Science, 1913, 15–26.

Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project scheduling with time windows and scarce resources. Berlin: Springer.

Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models. Baltimore: Johns Hopkins University Press.

Osogami, T. (2005). Analysis of multiserver systems via dimensionality reduction of Markov chains. PhD Thesis, Carnegie Mellon University.

Patterson, J. H. (1984). A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Management Science, 30(7), 854–867.

Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Research, 198(1), 697–705.

Stork, F. (2001). Stochastic resource-constrained project scheduling. PhD Thesis, Technische Universität Berlin.

Tsai, Y.-W., & Gemmill, D. D. (1998). Using tabu search to schedule activities of stochastic resource-constrained projects. European Journal of Operational Research, 111(1), 129–141.