Minimizing the expected makespan of a project with stochastic activity durations under resource constraints
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing. Journal of Scheduling, 14(2), 157–171.
Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of Scheduling, 10(3), 153–166.
Ballestín, F., & Leus, R. (2009). Resource-constrained project scheduling for timely project completion with stochastic activity durations. Production and Operations Management, 18(4), 459–474.
Bidot, J., Vidal, T., Laborie, P., & Beck, J. C. (2009). A theoretic and practical framework for scheduling in a stochastic environment. Journal of Scheduling, 12(3), 315–344.
Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic project networks. Operations Research, 45(1), 126–139.
Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian PERT networks to maximize the net present value. Operations Research Letters, 38(1), 51–56.
Creemers, S., Demeulemeester, E., & Van de Vonder, S. (2014). A new approach for quantitative risk analysis. Annals of Operations Research, 213(1), 27–65.
Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: A research handbook. AH Dordrecht: Kluwer Academic Publishers Group.
Fu, N., Lau, H. C., Varakantham, P., & Xiao, F. (2012). Robust local search for solving RCPSP/max with durational uncertainty. Journal of Artificial Intelligence Research, 43, 43–86.
Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project scheduling with non-consumable limited resources. International Journal of Production Economics, 48(1), 29–37.
Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306.
Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13(1), 1–28.
Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project scheduling problem library. European Journal of Operational Research, 96(1), 205–216.
Kulkarni, V., & Adlakha, V. (1986). Markov and Markov-regenerative PERT networks. Operations Research, 34(5), 769–781.
Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. Philadelphia: American Statistical Association and the Society for Industrial and Applied Mathematics.
Möhring, R. H. (2000). Scheduling under uncertainty: Optimizing against a randomizing adversary. Lecture Notes in Computer Science, 1913, 15–26.
Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project scheduling with time windows and scarce resources. Berlin: Springer.
Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models. Baltimore: Johns Hopkins University Press.
Osogami, T. (2005). Analysis of multiserver systems via dimensionality reduction of Markov chains. PhD Thesis, Carnegie Mellon University.
Patterson, J. H. (1984). A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Management Science, 30(7), 854–867.
Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Research, 198(1), 697–705.
Stork, F. (2001). Stochastic resource-constrained project scheduling. PhD Thesis, Technische Universität Berlin.