Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms

Atmospheric Measurement Techniques - Tập 3 Số 2 - Trang 457-474
Martine Collaud Coen1, E. Weingartner2, Arnoud Apituley3, Darius Čeburnis4, R. Fierz‐Schmidhauser2, H. Flentje5, Bas Henzing6, Mathew R. Heal4, M. Moerman3, Andreas Petzold7, Otmar Schmid8,9, Urs Baltensperger2
1MeteoSwiss, Aerological Station, Les Invuardes, 1530 Payerne, Switzerland
2Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
3National Institute for Public Health and the Environment, Bilthoven, The Netherlands
4School of Physics / Environmental Change Institute, National University of Ireland, Galway; Ireland
5Deutscher Wetterdienst (DWD), Meteorologisches Observatorium (MOHP), Albin-Schwaiger-Weg 10, 82383 Hohenpeissenberg, Germany
6Netherlands Organisation for Applied Scientific Research, TNO, 80015 Utrecht, The Netherlands
7Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Wessling, Germany
8Missouri University of Science and Technology, Center of Excellence for Aerospace Particulate Emissions Reduction Research, Rolla, MO 65409, USA
9formerly at: Max Planck Institute for Chemistry, Biogeochemistry Department, 55020 Mainz, Germany

Tóm tắt

Abstract. The aerosol light absorption coefficient is an essential parameter involved in atmospheric radiation budget calculations. The Aethalometer (AE) has the great advantage of measuring the aerosol light absorption coefficient at several wavelengths, but the derived absorption coefficients are systematically too high when compared to reference methods. Up to now, four different correction algorithms of the AE absorption coefficients have been proposed by several authors. A new correction scheme based on these previously published methods has been developed, which accounts for the optical properties of the aerosol particles embedded in the filter. All the corrections have been tested on six datasets representing different aerosol types and loadings and include multi-wavelength AE and white-light AE. All the corrections have also been evaluated through comparison with a Multi-Angle Absorption Photometer (MAAP) for four datasets lasting between 6 months and five years. The modification of the wavelength dependence by the different corrections is analyzed in detail. The performances and the limits of all AE corrections are determined and recommendations are given.

Từ khóa


Tài liệu tham khảo

Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29(1), 57–69, 1998.

Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303(5662), 1337–1342, 2004.

Arnott, W., Hamasha, K., Moosmüller, H., Sheridan, P. J. , and Ogren, J. A.: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer, Aerosol Sci Tech., 39(1), 17–29, 2005.

Baltensperger, U., Gäggeler, H. W., Jost, D. T., Lugauer, M., Schwikowski, M., Weingartner, E., and Seibert, P.: Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland, J. Geophys. Res., 102(D16), 19707–19715, 1997.

Bohren, C. F. and Huffman, D. R.: Absorption and Scattering by small Particles, Wiley, New York, 196, 1983.

Bond, T. and Bergstrom, R.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 1–41, 2006.

Bond, T. C., Anderson, T. L., and Campbell, D.: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, Aerosol Sci. Tech., 30(6), 582–600, 1999.

Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., and Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, 2008.

Heintzenberg, J., Charlson, R. J., Clarke, A. D., Liousse, C., Ramaswamy, V., Shine, K. P., Wendisch, M., and Helas, G.: Measurements and modeling of aerosol single-scattering albedo: progress, problems and prospects, Contrib. Atmos. Phys., 70(4), 249–263, 1997.

Horvath, H.: Atmospheric light absorption: a review, Atmos. Environ., 27(3), 293–317, 1993.

Jennings, S. G., Kleefeld, C., O'Dowd, C. D., Spain, T. G., O'Brien, P., Roddy, A. F., and O'Connor, T. C.: Mace Head Atmospheric Research Station – characterization of aerosol radiative parameters, Boreal Environ. Res., 8, 303–314, 2003.

Junker, C., Jennings, S. G., and Cachier, H.: Aerosol light absorption in the North Atlantic: trends and seasonal characteristics during the period 1989 to 2003, Atmos. Chem. Phys., 6, 1913–1925, 2006.

Kaminski, U., Fricke, M., Wilhelm, R., Plörer, E., Hofmann, M., and Schafranek, R.: Aerosol Measurements at the GAW Global Station Hohenpeissenberg, in: The German Contribution to the GAW Programme: Upon the 225th Anniversary of GAW Hohenpeissenberg Observatory (WMO TD No. 1336), edited by: Fricke, W., Barrie, L. A., and Schleyer, R., GAW report No. 167, 72–83, 2006.

Lack, D. A., Cappa, C. D., Baynard, T., Massoli, P., Covert, D. S., Sierau, B., Bates, T. S., Quinn, P. K., Lovejoy, E. R., and Ravishankara, A. R.: Bias in filter-based aerosol absorption measurements due to organic aerosol loading: Evidence from ambient sampling, Aerosol Sci. Tech., 42(12), 1033–1041, 2008.

Lindberg, J. D., Douglass, R. E., and Garvey, D. M.: Atmospheric particulate absorption and black carbon measurement, Appl. Optics, 38, 2369–2376, 1999.

Liousse, C., Cachier, H., and Jennings, S. G.: Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ), Atmos. Environ., 27(8), 1203–1211, 1993.

Lugauer, M., Baltensperger, U., Furger, M., Gäggeler, H. W., Jost, D. T., Schwikoswki, M., and Wanner, H.: Aerosol transport to the high Alpine sites Jungfraujoch (3454 m a.s.l.) and Colle Gnifetti (4452 m a.s.l.), Tellus B, 50B, 76–92, 1998.

Moosmüller, H., Arnott, W. P., and Rogers, C. F.: Methods for real-time, in situ measurement of aerosol light absorption, J. Air Waste Manage., 47(2), 157–166, 1997.

Müller, T., Henzing, B., and Wiedensohler, A.: Intercomparison of three types of absorption photometers, European Aerosol Conference EAC-2008, Thessaloniki, Greece, 23–29 August 2008, T04A05P, 2008.

Nessler, R., Weingartner, E., and Baltensperger, U.: Adaptation of dry nephelometer measurements to ambient conditions at the Jungfraujoch, Environ. Sci. Technol., 39(7), 2219–2228, 2005.

Park, K., Chow, J. C., Watson, J. G., Trimble, D. L., Doraiswamy, P., Park, K., Arnott, W. P., Stroud, K. R., Bowers, K., and Bode, R.: Comparison of continuous and filter-based carbon measurements at the Fresno Supersite, J. Air Waste Manage., 56(4), 474–491, 2006.

Petzold, A., Kopp, C., and Niessner, R.: The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size, Atmos. Environ., 31(5), 661–672, 1997.

Petzold, A., Schloesser, H., Sheridan, P., Arnott, W., Ogren, J., and Virkkula, A.: Evaluation of multiangle absorption photometry for measuring aerosol light absorption, Aerosol Sci. Technol., 39(1), 40–51, 2005.

Petzold, A. and Schönlinner, M.: Multi-angle absorption photometry - a new method for the measurement of aerosol light absorption and atmospheric black carbon, J. Aerosol Sci., 35(4), 421–441, 2004.

Rice, J.: Comparison of integrated filter and automated carbon aerosol measurements at Research Triangle Park, North Carolina, Aerosol Sci. Technol., 38(S2), 23–36, 2004.

Russchenberg, H., Bosveld, F., Swart, D., Ten Brink, H., de Leeuw, G., Uijlenhoet, R., Arbesser-Rastburg, B., Van der Marel, H., Ligthart, L., Boers, R., and Apituley, A. : Ground-based atmospheric remote sensing in the Netherlands: European outlook, IEICE Trans. Commun., Vol. E88-B, p. 6, 2005.

Saathoff, H., Naumann, K. H., Schnaiter, M., Schöck, W., Weingartner, E., Baltensperger, U., Krämer, L., Bozoki, Z., Pöschl, U., and Niessner, R.: Carbon mass determinations during the AIDA soot aerosol campaign 1999, J. Aerosol Sci., 34(10), 1399–1420, 2003.

Schaap, M., Apituley, A., Timmermans, R. M. A., Koelemeijer, R. B. A., and de Leeuw, G.: Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands, Atmos. Chem. Phys., 9, 909–925, 2009.

Schmid, O., Artaxo, P., Arnott, W. P., Chand, D., Gatti, L. V., Frank, G. P., Hoffer, A., Schnaiter, M., and Andreae, M. O.: Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques, Atmos. Chem. Phys., 6, 3443–3462, 2006.

Schnaiter, M., Schmid, O., Petzold, A., Fritzsche, L., Klein, K. F., Andreae, M. O., Helas, G., Thielmann, A., Gimmler, M., and Möhler O.: Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell, Aerosol Sci. Technol., 39(3), 249–260, 2005.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, From Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, 1998.

Slowik, J. G., Cross, E. S., Han, J. H., Davidovits, P., Onasch, T. B., Jayne, J. T., Williams, L. R., Canagaratna, M. R., Worsnop, D. R., and Chakrabarty, R. K.: An inter-comparison of instruments measuring black carbon content of soot particles, Aerosol Sci. Technol., 41(3), 295–314, 2007.

Steiger, M.: An overview of Diesel and wood burning soot chamber experiments and a loading effect correction for Aethalometer measurements, Diploma thesis, ETH Zürich, Switzerland, 2008.

Subramanian, R., Roden, C. A., Boparai, P., and Bond, T. C.: Yellow beads and missing particles: trouble ahead for filter-based absorption measurements, Aerosol Sci. Technol., 41, 630–637, 2007.

Virkkula, A., Ahlquist, N., Covert, D., Arnott, W., Sheridan, P., Quinn, P., and Coffman, D.: Modification, calibration and a field test of an instrument for measuring light absorption by particles, Aerosol Sci. Technol., 39(1), 68–83, 2005a.

Virkkula, A., Ahlquist, N., Covert, D., Sheridan, P., Arnott, W., and Ogren, J.: A three-wavelength optical extinction cell for measuring aerosol light extinction and its application to determining light absorption coefficient, Aerosol Sci. Technol., 39(1), 52–67, 2005b.

Virkkula, A., Makela, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hameri, K., and Koponen, I. K.: A simple procedure for correcting loading effects of aethalometer data, J. Air Waste Manage., 57(10), 1214–1222, 2007.

Wallace, L.: Real-time measurements of black carbon indoors and outdoors: A comparison of the Photoelectric Aerosol Sensor and the Aethalometer, Aerosol Sci. Technol., 39(10), 1015–1025, 2005.

Weingartner, E., Nyeki, S., and Baltensperger, U.: Seasonal and diurnal variation of the aerosol size distribution (10

Weingartner, E., Saathof, H., Schnaiter, M., Streit, N., Bitnar, B., and Baltensperger, U.: Absorption of light by soot particles: Determination of the absorption coefficient by means of Aethalometers, J. Aerosol Sci., 34, 1445–1463, 2003.