Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture

Journal of the Mechanics and Physics of Solids - Tập 82 - Trang 186-217 - 2015
Christian Miehe1, Steffen Mauthe1, Stephan Teichtmeister1
1Institute of Applied Mechanics (Civil Engineering), Chair I, University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

Tài liệu tham khảo

Adachi, 2007, Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci., 44, 739, 10.1016/j.ijrmms.2006.11.006 Adler, 2013 Ambrosio, 1990, Approximation of functionals depending on jumps by elliptic functionals via γ-convergence, Commun. Pure Appl. Math., 43, 999, 10.1002/cpa.3160430805 Armero, 1999, Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions, Comput. Methods Appl. Mech. Eng., 171, 205, 10.1016/S0045-7825(98)00211-4 Arnold, 1984, A stable finite element for the stokes equations, Calcolo, 21, 337, 10.1007/BF02576171 Babuška, 1971, Error-bounds for finite element method, Numer. Math., 16, 322, 10.1007/BF02165003 Babuška, 1973, The finite element method with lagrangian multipliers, Numer. Math., 20, 179, 10.1007/BF01436561 Bažant, 2014, Why fracking works, J. Appl. Mech., 81, 1, 10.1115/1.4028192 Bear, 1972 Bedford, 1983, Theories of immiscible and structured mixtures, Int. J. Eng. Sci., 21, 863, 10.1016/0020-7225(83)90071-X Biot, 1941, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155, 10.1063/1.1712886 Biot, 1965 Biot, 1972, Theory of finite deformations of porous solids, Indiana Univ. Math. J., 21, 597, 10.1512/iumj.1972.21.21048 Biot, 1977, Variational lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Struct., 13, 579, 10.1016/0020-7683(77)90031-2 Booker, 1975, An investigation of the stability of numerical solutions of Biot's equations of consolidation, Int. J. Solids Struct, 11, 907, 10.1016/0020-7683(75)90013-X Boone, 1990, A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media, Int. J. Numer. Anal. Methods Geomech., 14, 27, 10.1002/nag.1610140103 Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M., 2012. A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng., 217–220, 77–95. Borden, 2014, A higher-order phase-field model for brittle fracture, Comput. Methods Appl. Mech. Eng., 273, 100, 10.1016/j.cma.2014.01.016 Borja, 1995, A mathematical framework for finite strain elastoplastic consolidation. Part i, Comput. Methods Appl. Mech. Eng., 122, 145, 10.1016/0045-7825(94)00720-8 Bouklas, 2015, A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels, J. Mech. Phys. Solids, 79, 21, 10.1016/j.jmps.2015.03.004 Bourdin, 2000, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797, 10.1016/S0022-5096(99)00028-9 Bourdin, 2008, Special invited exposition, J. Elast., 91, 5, 10.1007/s10659-007-9107-3 Bowen, 1976, Theory of mixtures, vol. III Braides, 1998 Braides, 2002 Brezzi, 1991 Carstensen, 2002, Non-convex potentials and microstructures in finite-strain plasticity, Proc. R. Soc. Lond. A, 458, 299, 10.1098/rspa.2001.0864 Carter, 1977, A theory of finite elastic consolidation, Int. J. Solids Struct., 13, 467, 10.1016/0020-7683(77)90041-5 Carter, 1979, The analysis of finite elasto-plastic consolidation, Int. J. Numer. Anal. Methods Geomech., 3, 107, 10.1002/nag.1610030202 Christian, 1977, 399 Chukwudozie, C., Bourdin, B., Yoshioka, K., 2013. A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses. In: Proceedings of Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California. Coussy, 1995 Coussy, 1998, From mixture theory to Biot's approach for porous media, Int. J. Solids Struct., 35, 4619, 10.1016/S0020-7683(98)00087-0 de Boer, 2000 de Boer, 1990, The development of the concept of effective stresses, Acta Mech., 83, 77, 10.1007/BF01174734 de Borst, 2006, A numerical approach for arbitrary cracks in a fluid-saturated medium, Arch. Appl. Mech., 75, 595, 10.1007/s00419-006-0023-y Detournay, 1993, Fundamentals of poroelasticity, vol. II, 113 Ehlers, 2002, Foundations of multiphasic and porous materials, 3 Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9 Frémond, 2002 Frémond, 1996, Damage, gradient of damage, and principle of virtual power, Int. J. Solids Struct., 33, 1083, 10.1016/0020-7683(95)00074-7 Garagash, 2005, Plane-strain propagation of a fluid-driven fracture, J. Appl. Mech., 72, 916, 10.1115/1.2047596 Germain, 1973 Gordeliy, 2011, A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag, Int. J. Numer. Anal. Methods Geomech., 35, 602, 10.1002/nag.913 Grassl, P., Fahy, C., Gallipoli, D., Wheeler, S.J., 2015. On a 2d hydro-mechanical lattice approach for modelling hydraulic fracture. J. Mech. Phys. Solids, in press. Gurtin, 1996, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D, 92, 178, 10.1016/0167-2789(95)00173-5 Hakim, 2009, Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, 57, 342, 10.1016/j.jmps.2008.10.012 Halphen, 1975, Sur les matéraux standards généralisés, J. Méc., 14, 39 Hildebrand, 2012, A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains, Philos. Mag., 92, 4250, 10.1080/14786435.2012.705039 Hofacker, M., Miehe, C., 2012. Continuum phase field modeling of dynamic fracture: variational principles and staggered fe implementation, Int. J. Fracture, pp. 1–17. Huang, 1985, Hydraulic fracturing of a saturated porous medium-I, Theor. Appl. Fracture Mech., 4, 201, 10.1016/0167-8442(85)90005-9 Huang, 1985, Hydraulic fracturing of a saturated porous medium—II, Theor. Appl. Fracture Mech., 4, 215, 10.1016/0167-8442(85)90006-0 Irzal, 2013, A large deformation formulation for fluid flow in a progressively fracturing porous material, Comput. Methods Appl. Mech. Eng., 256, 29, 10.1016/j.cma.2012.12.011 Kraaijeveld, 2013, Two-dimensional mode I crack propagation in saturated ionized porous media using partition of unity finite elements, J. Appl. Mech., 80, 1, 10.1115/1.4007904 Lewis, 1998 Miehe, 2011, A multi-field incremental variational framework for gradient-extended standard dissipative solids, J. Mech. Phys. Solids, 59, 898, 10.1016/j.jmps.2010.11.001 Miehe, 2014, Variational gradient plasticity at finite strains. Part I, Comput. Methods Appl. Mech. Eng., 268, 677, 10.1016/j.cma.2013.03.014 Miehe, 2002, Homogenization of inelastic solid materials at finite strains based on incremental minimization principles, J. Mech. Phys. Solids, 50, 2123, 10.1016/S0022-5096(02)00016-9 Miehe, 2010, Thermodynamically consistent phase-field models of fracture, Int. J. Numer. Methods Eng., 83, 1273, 10.1002/nme.2861 Miehe, 2010, A phase field model for rate-independent crack propagation, Comput. Methods Appl. Mech. Eng., 199, 2765, 10.1016/j.cma.2010.04.011 Miehe, 2014, Mixed variational potentials and inherent symmetries of the Cahn–Hilliard theory of diffusive phase separation, Proc. R. Soc. A: Math. Phys. Eng. Sci.: Math., 470, 1 Miehe, 2014, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn–Hilliard-type and standard diffusion in elastic solids, Int. J. Numer. Methods Eng., 99, 737, 10.1002/nme.4700 Miehe, C., Schänzel, L., Ulmer, H., 2015. Phase field modeling of fracture in multi-physics problems. Part I. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Eng., doi: http://dx.doi.org/10.1016/j.cma.2014.11.016. Mielke, 2002, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162, 137, 10.1007/s002050200194 Mikelic, A., Wheeler, M., Wick, T., 2013. A Phase Field Approach to the Fluid Filled Fracture Surrounded by a Poroelastic Medium. Technical Report, ICES Report 13-15, The Institute for Computational Engineering and Science, The University of Texas at Austin. Mohammadnejad, 2013, Hydro-mechanical modeling of cohesive propagation in multiphase porous media using the extended finite element method, Int. J. Numer. Anal. Methods Geomech., 37, 1247, 10.1002/nag.2079 Ortiz, 1999, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47, 397, 10.1016/S0022-5096(97)00096-3 Ortiz, 1999, The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Eng., 171, 419, 10.1016/S0045-7825(98)00219-9 Papastavrou, 1997, Enhanced finite element formulation for geometrically linear fluid saturated porous media, Mech. Cohesive-Fricton. Mater., 2, 185, 10.1002/(SICI)1099-1484(199707)2:3<185::AID-CFM21>3.0.CO;2-V Pham, 2011, Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 618, 10.1177/1056789510386852 Prévost, 1980, Mechanics of continuous porous media, Int. J. Eng. Sci., 18, 787, 10.1016/0020-7225(80)90026-9 Prévost, 1983, Implicit–explicit schemes for nonlinear consolidation, Comput. Methods Appl. Mech. Eng., 39, 225, 10.1016/0045-7825(83)90022-1 Rice, 1976, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14, 227, 10.1029/RG014i002p00227 Rubin, 1995, Propagation of magma-filled cracks, Annu. Rev. Earth Planet. Sci., 23, 287, 10.1146/annurev.ea.23.050195.001443 Sandhu, 1970, A variational principle for linear, coupled field problems in continuum mechanics, Int. J. Eng. Sci., 8, 989, 10.1016/0020-7225(70)90081-9 Sandhu, 1969, Finite-element analysis of seepage in elastic media, J. Eng. Mech. Div., 95, 641, 10.1061/JMCEA3.0001124 Savitski, 2002, Propagation of a penny-shaped fluid-driven fracture in an impermeable rock, Int. J. Solids Struct., 39, 6311, 10.1016/S0020-7683(02)00492-4 Schrefler, 2006, On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. Methods Appl. Mech. Eng., 195, 444, 10.1016/j.cma.2004.10.014 Secchi, 2012, A method for 3-d hydraulic fracturing simulation, Int. J. Fracture, 178, 245, 10.1007/s10704-012-9742-y Simo, 1990, Variational formulation, discrete conservation laws, and path-domain independent integrals for elasto-viscoplasticity, J. Appl. Mech., 57, 488, 10.1115/1.2897050 Sneddon, 1946, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. Lond. A, 187, 229, 10.1098/rspa.1946.0077 Terzaghi, 1925 Terzaghi, 1943 Truesdell, 1984 Yang, 2006, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, J. Mech. Phys. Solids, 54, 401, 10.1016/j.jmps.2005.08.010 Zhang, 2002, Propagation of a penny-shaped hydraulic fracture parallel to the free-surface of an elastic half space, Int. J. Fracture, 115, 126, 10.1023/A:1016345906315 Zhou, 2007, Hybrid and enhanced finite element methods for problems of soil consolidation, Int. J. Numer. Methods Eng., 69, 221, 10.1002/nme.1745 Ziegler, 1963, Some extremum principles in irreversible thermodynamics with application to continuum mechanics, vol. IV Zienkiewicz, 2005