Minimisation of slab-selective radiofrequency excitation pulse durations constrained by an acceptable aliasing coefficient

Magnetic Resonance Imaging - Tập 81 - Trang 94-100 - 2021
Merlin J. Fair1,2, Peter D. Gatehouse1,2, David N. Firmin1,2
1CMR Unit, Royal Brompton Hospital, London, UK
2National Heart and Lung Institute, Imperial College London, London, UK

Tài liệu tham khảo

Lurie, 1985, A systematic design procedure for selective pulses in NMR imaging, Magn Reson Imaging, 3, 235, 10.1016/0730-725X(85)90352-2 Conolly, 1986, Optimal control solutions to the magnetic resonance selective excitation problem, IEEE Trans Med Imaging, 5, 106, 10.1109/TMI.1986.4307754 Mao, 1990, Slice profile improvement for a clinical MRI system, Magn Reson Imaging, 8, 767, 10.1016/0730-725X(90)90012-Q Lebsack, 2002, Iterative RF pulse refinement for magnetic resonance imaging, IEEE Trans Biomed Eng, 49, 41, 10.1109/10.972838 Rund, 2018, Magnetic resonance RF pulse design by optimal control with physical constraints, IEEE Trans Med Imaging, 37, 461, 10.1109/TMI.2017.2758391 Pauly, 1991, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging], IEEE Trans Med Imaging, 10, 53, 10.1109/42.75611 Buonocore, 1993, RF pulse design using the inverse scattering transform, Magn Reson Med, 29, 470, 10.1002/mrm.1910290408 Seada, 2021, Minimum TR radiofrequency-pulse design for rapid gradient echo sequences, Magn Reson Med Leung, 1997, Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature, Eur Radiol, 7, 981, 10.1007/s003300050237 Rofsky, 1999, Abdominal MR imaging with a volumetric interpolated breath-hold examination, Radiology, 212, 876, 10.1148/radiology.212.3.r99se34876 Vogt, 2005, Parallel acquisition techniques for accelerated volumetric interpolated breath-hold examination magnetic resonance imaging of the upper abdomen: assessment of image quality and lesion conspicuity, J Magn Reson Imaging, 21, 376, 10.1002/jmri.20288 Manka, 2011, Dynamic 3-dimensional stress cardiac magnetic Resonance perfusion imaging, J Am Coll Cardiol, 57, 437, 10.1016/j.jacc.2010.05.067 Shin, 2013, Three-dimensional first-pass myocardial perfusion MRI using a stack-of-spirals acquisition, Magn Reson Med, 69, 839, 10.1002/mrm.24303 Mendes, 2020, Quantitative 3D myocardial perfusion with an efficient arterial input function, Magn Reson Med, 83, 1949, 10.1002/mrm.28050 Fair, 2020, Initial investigation of free-breathing 3D whole-heart stress myocardial perfusion MRI, Glob Cardiol Sci Pract, 2020 Fair, 2015, A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance, J Cardiovasc Magn Reson, 17, 68, 10.1186/s12968-015-0162-9 McRobbie, 2017 Bernstein, 2004 Haacke, 1999 Katscher, 2005, 2256 Nistler, 2007, 1063 Wiesinger, 2007, 3352 Young, 1985, Variations in slice shape and absorption as artifacts in the determination of tissue parameters in NMR imaging, Magn Reson Med, 2, 355, 10.1002/mrm.1910020406 Purdy, 1992, 882 Priatna, 1995, Variablemangle uniform signal excitation (vuse) for threel dimensional time-of-flight MR angiography, J Magn Reson Imaging, 5, 421, 10.1002/jmri.1880050409 Nägele, 1995, Nonlinear excitation profiles for three-dimensional inflow MR angiography, J Magn Reson Imaging, 5, 416, 10.1002/jmri.1880050408 Halliburton, 1999, Evaluation of radiofrequency pulses and contrast agent doses for use in 3D pulmonary magnetic resonance angiography, J Magn Reson Imaging, 10, 929, 10.1002/(SICI)1522-2586(199912)10:6<929::AID-JMRI4>3.0.CO;2-Q Robison, 1994, Reduction of slab boundary artifact with multiple overlapping thin slab acquisition in MR angiography of the cervical carotid artery, J Magn Reson Imaging JMRI, 4, 529, 10.1002/jmri.1880040404