Minimax algorithm for constructing an optimal control strategy in differential games with a Lipschitz payoff

Pleiades Publishing Ltd - Tập 51 - Trang 550-574 - 2011
G. E. Ivanov1, V. A. Kazeev1
1Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia

Tóm tắt

For a zero-sum differential game, an algorithm is proposed for computing the value of the game and constructing optimal control strategies with the help of stepwise minimax. It is assumed that the dynamics can be nonlinear and the cost functional of the game is the sum of an integral term and a terminal payoff function that satisfies the Lipschitz condition but can be neither convex nor concave. The players’ controls are chosen from given sets that are generally time-dependent and unbounded. An error estimate for the algorithm is obtained depending on the number of partition points in the time interval and on the fineness of the spatial triangulation. Numerical results for an illustrative example are presented.

Tài liệu tham khảo

R. Isaacs, Differential Games (Wiley, New York, 1965; Mir, Moscow, 1967). N. N. Krasovskii, Control of a Dynamic System (Nauka, Moscow, 1985) [in Russian]. L. S. Pontryagin, “Linear Differential Games of Pursuit,” Mat. Sb. 112, 307–330 (1980). M. G. Crandall and P.-L. Lions, “Viscosity Solutions of Hamilton-Jacobi Equations,” Trans. Am. Math. Soc. 277(3), 1–42 (1983). Algorithms and Codes for Solving Linear Differential Games, Ed. by A. I. Subbotin and V. S. Patsko (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1984) [in Russian]. Synthesis of Optimal Control in Game Systems: Collection of Scientific Works (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1986) [in Russian]. Control with a Guaranteed Result: Collection of Scientific Works (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1987) [in Russian]. Closed-Loop Control with a Guaranteed Result: Collection of Scientific Works (Ural. Otd. Akad. Nauk SSSR, Sverdlovsk, 1988) [in Russian]. Control of Dynamic Systems: Collection of Scientific Works (Ural. Otd. Akad. Nauk SSSR, Sverdlovsk, 1990) [in Russian]. A. M. Taras’ev, V. N. Ushakov, and A. P. Khripunov, “On a Certain Computational Algorithm for Solving Game Control Problems,” Prikl. Mat. Mekh. 51, 216–222 (1987). S. A. Ganebnyi, S. S. Kumkov, V. S. Patsko, and S. R. Pyatko, Preprint, IMM UrO RAN (Inst. of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2005). F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Methods for Control of Nonlinear Mechanical Systems (Fizmatlit, Moscow, 2006) [in Russian]. V. S. Patsko, N. D. Botkin, V. M. Kein, et al., “Control of an Aircraft Landing in Windshear,” J. Optim. Theory Appl. 83, 237–267. A. P. Ponomarev, “Estimate for the Error of a Numerical Method for Constructing Pontryagin’s Alternating Integral,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. No. 4, 37–43 (1978). N. D. Botkin, “Evaluation of Numerical Construction Error in Differential Game with Fixed Terminal Time,” Problems of Control and Information Theory 11(4), 283–295 (1982). G. E. Ivanov and E. S. Polovinkin, “Second-Order Convergence of an Algorithm Calculating the Value of a Linear Differential Game,” Dokl. Akad. Nauk 340, 151–154 (1995). G. E. Ivanov and E. S. Polovinkin, “Strongly Convex Linear Differential Games,” Differ. Uravn. 31, 1641–1648 (1995). E. S. Polovinkin, G. E. Ivanov, M. V. Balashov, et al., “An Algorithm for the Numerical Solution of Linear Differential Games,” Mat. Sb. 192(10), 95–122 (2001). I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979). Ch. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions (Springer-Verlag, Berlin, 1977).