Minimally Invasive Intracerebral Hemorrhage Evacuation Improves Pericavity Cerebral Blood Volume

Colton J. Smith1, Christina P. Rossitto1, Michael Manhart2, Imke Fuhrmann2, Julie DiNitto2, Turner Baker3, Muhammad Ali1, Marily Sarmiento2, J Mocco1, Christopher P. Kellner1
1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
2Siemens Healthcare, Erlangen, Germany
3Sinai BioDesign, Icahn School of Medicine at Mount Sinai, New York, USA

Tóm tắt

Cerebral blood volume mapping can characterize hemodynamic changes within brain tissue, particularly after stroke. This study aims to quantify blood volume changes in the perihematomal parenchyma and pericavity parenchyma after minimally invasive intracerebral hemorrhage evacuation (MIS for ICH). Thirty-two patients underwent MIS for ICH with pre- and post-operative CT imaging and intraoperative perfusion imaging (DynaCT PBV Neuro, Artis Q, Siemens). The pre-operative and post-operative CT scans were segmented using ITK-SNAP software to calculate hematoma volumes and to delineate the pericavity tissue. Helical CT segmentations were registered to cone beam CT data using elastix software. Mean blood volumes were computed inside subvolumes by dilating the segmentations at increasing distances from the lesion. Pre-operative perihematomal blood volumes and post-operative pericavity blood volumes (PBV) were compared. In 27 patients with complete imaging, post-operative PBV significantly increased within the 6-mm pericavity region after MIS for ICH. The mean relative PBV increased by 21.6 and 9.1% at 3 mm and 6 mm, respectively (P = 0.001 and 0.016, respectively). At the 9-mm pericavity region, there was a 2.83% increase in mean relative PBV, though no longer statistically significant. PBV analysis demonstrated a significant increase in pericavity cerebral blood volume after minimally invasive ICH evacuation to a distance of 6 mm from the border of the lesion.

Tài liệu tham khảo

Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke. 2022;53:e282–361. Olivot J-M, Mlynash M, Kleinman JT, Straka M, Venkatasubramanian C, Bammer R, et al. MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke. 2010;41:2681–3. Herweh C, Jüttler E, Schellinger PD, Klotz E, Schramm P. Perfusion CT in hyperacute cerebral hemorrhage within 3 hours after symptom onset: is there an early perihemorrhagic penumbra? J Neuroimaging. 2010;20:350–3. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63. Etminan N, Beseoglu K, Turowski B, Steiger H-J, Hänggi D. Perfusion CT in patients with spontaneous lobar intracerebral hemorrhage: effect of surgery on perihemorrhagic perfusion. Stroke. 2012;43:759–63. Horowitz ME, Ali M, Chartrain AG, Allen OS, Scaggiante J, Glassberg B, et al. Definition and time course of pericavity edema after minimally invasive endoscopic intracerebral hemorrhage evacuation. J Neurointerv Surg. 2022;14:149–54. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34. Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA, et al. Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol. 2010;31:1462–9. Fiorella D, Turk A, Chaudry I, Turner R, Dunkin J, Roque C, et al. A prospective, multicenter pilot study investigating the utility of flat detector derived parenchymal blood volume maps to estimate cerebral blood volume in stroke patients. J Neurointerv Surg. 2014;6:451–6. Hung S-C, Lin C-J, Guo W-Y, Chang F-C, Luo C-B, Teng MM-H, et al. Toward the era of a one-stop imaging service using an angiography suite for neurovascular disorders. Biomed Res Int. 2013;2013:873614. Kamran M, Nagaraja S, Byrne JV. C-arm flat detector computed tomography: the technique and its applications in interventional neuro-radiology. Neuroradiology. 2010;52:319–27. Kellner CP, Chartrain AG, Nistal DA, Scaggiante J, Hom D, Ghatan S, et al. The Stereotactic Intracerebral Hemorrhage Underwater Blood Aspiration (SCUBA) technique for minimally invasive endoscopic intracerebral hemorrhage evacuation. J Neurointerv Surg. 2018;10:771–6. Bley T, Strother CM, Pulfer K, Royalty K, Zellerhoff M, Deuerling-Zheng Y, et al. C-arm CT measurement of cerebral blood volume in ischemic stroke: an experimental study in canines. AJNR Am J Neuroradiol. 2010;31:536–40. Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Boese J, Zellerhoff M, et al. Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT. Eur Radiol. 2011;21:882–9. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205. Haralick RM, Sternberg SR, Zhuang X. Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell. 1987;9:532–50. Fainardi E, Borrelli M, Saletti A, Schivalocchi R, Azzini C, Cavallo M, et al. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage. Neuroradiology. 2008;50:729–40. Hatazawa J, Shimosegawa E, Toyoshima H, Ardekani BA, Suzuki A, Okudera T, et al. Cerebral blood volume in acute brain infarction: a combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke. 1999;30:800–6. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31. Morotti A, Busto G, Bernardoni A, Marini S, Casetta I, Fainardi E. Association between perihematomal perfusion and intracerebral hemorrhage outcome. Neurocrit Care. 2020;33:525–32. Tobieson L, Rossitti S, Zsigmond P, Hillman J, Marklund N. Persistent metabolic disturbance in the perihemorrhagic zone despite a normalized cerebral blood flow following surgery for intracerebral hemorrhage. Neurosurgery. 2019;84:1269–79. Butcher KS, Jeerakathil T, Hill M, Demchuk AM, Dowlatshahi D, Coutts SB, et al. The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke. 2013;44:620–6. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology. 1999;210:519–27.