Minimal surfaces in three dimensional Lorentzian Heisenberg group

Turhan, Essin1, Altay, Gülden1
1Department of Mathematics, Faculty of Science and Art, Fırat University, Elazığ, Turkey

Tóm tắt

In this paper, we study the minimal and maximal surface in three dimensional Lorentzian Heisenberg group $$Heis_{3}$$ . We obtain characterizations of the one parameter subgroups in three dimensional Lorentzian Heisenberg group which is endowed with left invariant Lorentz metrics $$g_{1}, g_{2}, g_{3}$$ .

Tài liệu tham khảo

citation_journal_title=Differ. Geom.-Dyn. Syst.; citation_title=Helicoids and axially symmetric minimal surfaces in 3-dimensional homogenous spaces; citation_author=M Bekkar, F Bouziani, Y Boukhatem, J Inoguchi; citation_volume=9; citation_publication_date=2007; citation_pages=21-39; citation_id=CR1 citation_journal_title=J. Differ. Geom.; citation_title=Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group ; citation_author=D Danielli, N Garofalo, DM Nhieu, SD Pauls; citation_volume=81; citation_publication_date=2009; citation_pages=251-295; citation_id=CR2 citation_journal_title=Novi Sad J. Math.; citation_title=Some characterizations of rectifying curves in the Minkowski 3-space; citation_author=K Ilarslan, E Nesovic, MP Torgasev; citation_volume=33; citation_publication_date=2003; citation_pages=23-32; citation_id=CR3 citation_journal_title=Turk. J. Math.; citation_title=Spacelike normal curves in Minkowski space ; citation_author=K Ilarslan; citation_volume=29; citation_publication_date=2005; citation_pages=53-63; citation_id=CR4 citation_journal_title=Hokkaido Math. J.; citation_title=Grassmann geometry on the 3-dimensional Heisenberg group; citation_author=J Inoguchi, K Kuwabara, H Naitoh; citation_volume=34; citation_publication_date=2005; citation_pages=375-391; citation_doi=10.14492/hokmj/1285766228; citation_id=CR5 citation_journal_title=Acta Math. Sin.; citation_title=A Weirstrass representation formula for minimal surfaces in and ; citation_author=F Mercuri, S Montaldo, P Piu; citation_volume=22; citation_publication_date=2006; citation_pages=1603-1612; citation_doi=10.1007/s10114-005-0637-y; citation_id=CR6 citation_journal_title=Univ. Stud. Lecce; citation_title=One parameter subgroups and minimal surfaces in the Heisenberg group; citation_author=P Piu, A Sanini; citation_volume=46; citation_publication_date=2000; citation_pages=143-153; citation_id=CR7 citation_journal_title=Geom. Dedic.; citation_title=Lorentzian geometry of the Heisenberg group; citation_author=N Rahmani, S Rahmani; citation_volume=118; citation_publication_date=2006; citation_pages=133-140; citation_doi=10.1007/s10711-005-9030-3; citation_id=CR8 citation_journal_title=N.-Holl. Phys. Publ.; citation_title=Metriiques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois; citation_author=S Rahmani; citation_volume=9; citation_publication_date=1992; citation_pages=295-302; citation_id=CR9