Minimal surfaces and strings from spinors a realization of the cartan programme

Il Nuovo Cimento A (1965-1970) - Tập 96 - Trang 194-211 - 2008
P. Budinich1, L. Dabrowski1, P. Furlan1,2,3
1International School for Advanced Studies (ISAS), Trieste, Italy
2Department of Theoretical Physics, University of Trieste, Trieste, Italy
3Istituto Nazionale di Fisica Nucleare Sezione di Trieste, Italia

Tóm tắt

It is shown ow the old Enneper-Weierstrass integral parametrization ofminimal surfaces inR 3 and the Eisenhart ones inR 3,1, when expressed through bilinear spinor polynomia, may be considered as deriving from a particularlocal realization of the possibility envisaged by Cartan: to consider ordinary vectors as generated from isotropic planes in complex spaces, in the frame of the bijective Cartan map connecting pure spinor directions to totally null planes in complex spaces. In the case ofR 3 the correspondingglobal realization of the Cartan map extends the Enneper-Weierstrass parametrization to the Gauss-conformal map of the minimal surface to S2, which may be identified with the Riemann celestial sphere. Forreal spinors minimal surfaces are substituted bystrings both inR 2,1 andR 3,1; inR 2,1 strings are globally mapped to a torus (inR 4). InR 3,1 (and its conformal extensions) a prescription is given to obtain strings as integrals of real, bilinear spinor null vectors, from the Enneper-Weierstrass spinor representation of minimal surfaces, through the use of unitary transformations in spinor space which allows its restriction to the real (Majorana spinor-space). It is shown that the Nambu action, or the area of the world surface described by the space-time string, is minimized by the Lagrangian density expressed as a quadrilinear spinor product formally reminding Fermi and Thirring interaction Lagrangians.

Tài liệu tham khảo

E. Cartan:Bull. Soc. Math. France,41, 53 (1913). C. Chevalley:The Algebraic Theory of Spinors (Columbia University Press, New York, N. Y., 1954);A. Crumeyrolle:Ann. Inst. Henri Poincaré A,14, 303 (1971). P. BuDinich:Czech. J. Phys. B,29, 6 (1979);Phys. Rep.,137, 35 (1986);E. Caianiello andA. Giovannini:Lett. Nuovo Cimento,34, 301 (1982);P. Furlan andR. Rcaczka:J. Math. Phys. (N. Y.),26, 3021 (1985);27, 1883 (1986);I. M. Benn andR. W. Tucker:Pure spinors and real Clifford algebras;L. P. Hughston andT. R. Hurd:Phys. Rep.,100, 273 (1983);P. Lounesto:Ann. Inst. Henri Poincaré A,33, 53 (1980); P. Budinich and A. Trautman:Lett. Math. Phys.,11, 315 (1986). E. Cartan:La Theorie des Spinéurs, Vol.2 (Hermann, Paris, 1938), p. 25. P. Budinich:Commun. Math. Phys. 107, 455 (1986). E. Calabi:Quelques applications de l’analyse complexe aux surfaces d’aitre minima, inTopics in Complex Manifolds (University de Montreal, 1967), p. 59. J. Eells andS. Salamon:Ann. Scuola Norm. Sup. Pisa, Cl. Sci. IV,12, No.4, 589 (1985). S. S. Chern:Differential and Combinatorial Topology (in honour of M. Morse) (Princeton University Press, Princeton, N. J., 1965), p. 187. A. Enneper:Z. Math. Phys.,9, 96 (1864);K. Weierstrass:Monats Berichte der Berliner Akademie, 612 (1866). M. Rigoli:The conformal Gauss map of submanifolds of the Möbius space, ICTP preprint IC/86/179 (1986). L. P. Eisenhart:Am. J. Math.,34, 216 (1912). Y. Nambu:Proceedings of the International Conference on Symmetries and Quark Models, Wayne State University, 1969 (Gordon and Breach, New York, N. Y., 1970), p. 269. L. P. Eisenhart:A Treatise on the Differential Geometry of Curves and Surfaces (Ginn, London, 1909), (Dover, New York, N. Y., 1960).