Minimal and maximal extensions of M-hypoelliptic proper uniform pseudo-differential operators in $$L^p$$ -spaces on non-compact manifolds

Ognjen Milatovic1
1Department of Mathematics and Statistics, University of North Florida, Jacksonville, USA

Tóm tắt

In the context of manifolds of bounded geometry, we show that the properties of proper uniform pseudo-differential operators (PUPDOs) constructed by Kordyukov, Meladze, and Shubin carry over to PUPDOs whose local representations have symbols belonging to the (weighted) class $$M_{\rho ,\varLambda }^{m}$$ introduced by Garello and Morando. Under the M-ellipticity assumption, we show that the minimal and maximal extensions of such PUPDOs in the $$L^p$$ -spaces, where $$1

Tài liệu tham khảo

Alimohammady, M., Kalleji, M.K.: Fredholmness property of \(M\)-elliptic pseudo-differential operator under change variable in its symbol. J. Pseudo-Differ. Oper. Appl. 4, 371–392 (2013) Alimohammady, M., Kalleji, M.K.: Spectral theory of a hybrid class of pseudo-differential operators. Complex Var. Elliptic Equ. 59, 1573–1588 (2014) Boggiatto, P., Buzano, E., Rodino, L.: Global Hypoellipticity and Spectral Theory. Mathematical Research, vol. 92. Akademie Verlag, Berlin (1996) Catană, V.: \(M\)-hypoelliptic pseudo-differential operators on \(L^p({\mathbb{R}}^n)\). Appl. Anal. 87, 657–666 (2008) Dasgupta, A., Wong, M.W.: Spectral theory of \(SG\)-pseudo-differential operators on \(L^p({\mathbb{R}}^n)\). Studia Math. 187, 185–197 (2008) Engel, A.: \(K\)-Homology classes of elliptic uniform pseudodifferential operators. Ann. Glob. Anal. Geom. 54, 551–582 (2018) Fefferman, C.: \(L^p\)-bounds for pseudo-differential operators. Israel J. Math. 14, 413–417 (1973) Garello, G., Morando, A.: A class of \(L^p\)-bounded pseudo-differential operators. In: Progress in Analysis (Berlin, 2001), pp. 689–696. World Sci. Publ., River Edge, NJ (2003) Garello, G., Morando, A.: \(L^p\)-bounded pseudo-differential operators and regularity for multi-quasi-elliptic equations. Integ. Equ. Oper. Theory 51, 501–517 (2005) Garello, G., Morando, A.: \(m\)-microlocal elliptic pseudo-differential operators acting on \(L^{p}_{\rm loc}(\varOmega )\). Math. Nachr. 289, 1820–1837 (2016) Gudmundsson, S.: An Introduction to Riemannian Geometry. Lecture Notes in Mathematics, Lund University (2020) Helffer, B.: Théorie spectrale pour des opérateurs globalement elliptiques. Astérisque 112. Société Mathématique de France, Paris (1984) Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (2007) Kalleji, M.K.: Essential spectrum of \(M\)-hypoelliptic pseudo-differential operators on the torus. J. Pseudo-Differ. Oper. Appl. 6, 439–459 (2015) Kordyukov, Yu.A.: \(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math. 23, 223–260 (1991) Kordyukov, Yu.A.: Transversally elliptic operators on a \(G\)-manifold of bounded geometry. Russian J. Math. Phys. 2, 175–198 (1994) Kumano-go, H.: Pseudodifferential Operators. MIT Press, Cambridge, MA (1981) Meladze, G. V., Shubin M. A.: Proper uniform pseudodifferential operators on unimodular Lie groups. J. Soviet Math. 45, 1421–1439 (1989), Transl from: Trudy Sem. Petrovsk. 11, 74–97 (1986) Petersen, P.: Riemannian Geometry, 3rd edn. Springer, Cham (2016) Roe, J.: An index theorem on open manifolds I. J. Differential Geom. 27, 87–113 (1988) Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Birkhäuser Verlag, Basel (2010) Shubin, M.A.: Spectral theory of elliptic operators on noncompact manifolds. Astérisque 207, 35–108 (1992) Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001) Taylor, M.: Pseudodifferential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton, N.J. (1981) Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators, vol. 1. The University Series in Mathematics. Plenum Press, New York-London (1980) Wong, M.W.: An Introduction to Pseudo-Differential Operators, 2nd edn. World Scientific Publishing Co., Inc, River Edge, NJ (1999) Wong, M.W.: \(M\)-elliptic pseudo-differential operators on \(L^p(\mathbb{R}^{n})\). Math. Nachr. 279, 319–326 (2006)