Minimal Soft Lattice Theta Functions

Springer Science and Business Media LLC - Tập 52 - Trang 115-138 - 2020
Laurent Bétermin1
1Faculty of Mathematics, University of Vienna, Vienna, Austria

Tóm tắt

We study the minimality properties of a new type of “soft” theta functions. For a lattice $$L\subset {\mathbb {R}}^d$$ , an L-periodic distribution of mass $$\mu _L$$ , and another mass $$\nu _z$$ centered at $$z\in {\mathbb {R}}^d$$ , we define, for all scaling parameters $$\alpha >0$$ , the translated lattice theta function $$\theta _{\mu _L+\nu _z}(\alpha )$$ as the Gaussian interaction energy between $$\nu _z$$ and $$\mu _L$$ . We show that any strict local or global minimality result that is true in the point case $$\mu =\nu =\delta _0$$ also holds for $$L\mapsto \theta _{\mu _L+\nu _0}(\alpha )$$ and $$z\mapsto \theta _{\mu _L+\nu _z}(\alpha )$$ when the measures are radially symmetric with respect to the points of $$L\cup \{z\}$$ and sufficiently rescaled around them (i.e., at a low scale). The minimality at all scales is also proved when the radially symmetric measures are generated by a completely monotone kernel. The method is based on a generalized Jacobi transformation formula, some standard integral representations for lattice energies, and an approximation argument. Furthermore, for the honeycomb lattice $${\mathsf {H}}$$ , the center of any primitive honeycomb is shown to minimize $$z\mapsto \theta _{\mu _{{\mathsf {H}}}+\nu _z}(\alpha )$$ , and many applications are stated for other particular physically relevant lattices including the triangular, square, cubic, orthorhombic, body-centered-cubic, and face-centered-cubic lattices.

Tài liệu tham khảo

Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. U.S. Government Printing Office, Washington D.C., (1964) Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241(2), 661–702 (2006) Baernstein II, A.: A minimum problem for heat kernels of flat tori. Contemp. Math. 201, 227–243 (1997) Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Nonlocal interactions by repulsive–attractive potentials: radial ins/stability. Phys. D 260, 5–25 (2013) Bernoff, A.J., Topaz, C.M.: A primer of swarm equilibria. SIAM J. Appl. Dyn. Syst. 10(1), 212–250 (2011) Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929) Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016) Bétermin, L.: Local variational study of 2d lattice energies and application to Lennard–Jones type interactions. Nonlinearity 31(9), 3973–4005 (2018) Bétermin, L.: Local optimality of cubic lattices for interaction energies. Anal. Math. Phys. 9(1), 403–426 (2019) Bétermin, L.: Minimizing lattice structures for Morse potential energy in two and three dimensions. J. Math. Phys. 60(10), 102901 (2019) Bétermin, L., Knüpfer, H.: On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal. J. Nonlinear Sci. 28(5), 1629–1656 (2018) Bétermin, L., Knüpfer, H.: Optimal lattice configurations for interacting spatially extended particles. Lett. Math. Phys. 108(10), 2213–2228 (2018) Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017) Bétermin, L., Petrache, M.: Optimal and non-optimal lattices for non-completely monotone interaction potentials. Anal. Math. Phys. 9(4), 2033–2073 (2019) Bétermin, L., Sandier, E.: Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere. Constr. Approx. , Special Issue: Approximation and Statistical Physics - Part I, 47(1):39–74 (2018) Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \({\mathbb{R}}^2\): Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015) Blanc, X.: Geometry optimization for crystals in Thomas–Fermi type theories of solids. Commun. Partial Differ. Equ. 26(3–4), 651–696 (2001) Blanc, X., Le Bris, C., Yedder, B.H.: A Numerical Investigation of the 2-Dimensional Crystal Problem. Preprint du laboratoire J.-L. Lions, Université de Paris 6 (2003) Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2(2), 255–306 (2015) Bochner, S.: Theta relations with spherical harmonics. Proc. Natl. Acad. Sci. USA 37(12), 804–808 (1951) Born, M.: Über elektrostatische Gitterpotentiale. Zeit. f. Physik 7, 124–140 (1921) Carrillo, J.A., Martin, S., Panferov, V.: A new interaction potential for swarming models. Phys. D 260, 112–126 (2013) Cassels, J.W.S.: On a problem of Rankin about the Epstein zeta-function. Proc. Glasg. Math. Assoc. 4(2), 73–80 (1959) Chen, X., Oshita, Y.: An application of the modular function in nonlocal variational problems. Arch. Ration. Mech. Anal. 186(1), 109–132 (2007) Cohn, H., de Courcy-Ireland, M.: The Gaussian core model in high dimensions. Duke Math. J. (online first). https://doi.org/10.1215/00127094-2018-0018 1–39 (2018) Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007) Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185(3), 1017–1033 (2017) Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: Universal optimality of the \(E_8\) and leech lattices and interpolation formulas. Preprint. arXiv:1902.05438 (2019) Connett, W.C., Schwartz, A.L.: Fourier analysis off groups. Contemp. Math. 137, 169–176 (1992) Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290. Springer, Berlin (1999) Coulangeon, R.: Spherical designs and zeta functions of lattices. Int. Math. Res. Not. 2006, 49620 (2006) Coulangeon, R., Lazzarini, G.: Spherical designs and heights of Euclidean lattices. J. Number Theory 141, 288–315 (2014) Coulangeon, R., Schürmann, A.: Energy minimization, periodic sets and spherical designs. Int. Math. Res. Not. 829–848, 2012 (2012) Coulangeon, R., Schürmann, A.: Local energy optimality of periodic sets. Preprint. arXiv:1802.02072 (2018) Diananda, P.H.: Notes on two lemmas concerning the Epstein zeta-function. Proc. Glasg. Math. Assoc. 6(4), 202–204 (1964) Ennola, V.: A lemma about the Epstein zeta-function. Proc. Glasg. Math. Assoc. 6(4), 198–201 (1964) Faulhuber, M.: Extremal Determinants of Laplace-Beltrami Operators for Rectangular Tori. Preprint. arXiv:1709.06006 (2017) Faulhuber, M.: Minimal frame operator norms via minimal theta functions. J. Fourier Anal. Appl. 24(2), 545–559 (2018) Faulhuber, M.: Some Curious Results Related to a Conjecture of Strohmer and Beaver. Preprint (2018) Faulhuber, M., Steinerberger, S.: Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl. 445(1), 407–422 (2017) Faulhuber, M., Steinerberger, S.: An extremal property of the hexagonal lattice. J. Stat. Phy. 177(2), 285–298 (2019) Flory, P.J., Krigbaum, W.R.: Statistical mechanics of dilute polymer solutions. II. J. Chem. Phys. 18(8), 1086 (1950) Fujikake, S., Deringer, V.L., Lee, T.H., Krynski, M., Elliott, S.R., Csanyi, G.: Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures. J. Chem. Phys. 148(24), 241714 (2018) Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamics of self assembly of magnetized disks rotating at the liquid–air interface. Proc. Natl. Acad. Sci. USA 99(7), 4147–4151 (2002) Hardin, D.P., Saff, E.B., Simanek, B.: Periodic discrete energy for long-range potentials. J. Math. Phys. 55(12), 123509 (2014) Heyes, D.M., Branka, A.C.: Lattice summations for spread out particles: applications to neutral and charged systems. J. Chem. Phys. 138(3), 034504 (2013) Kaplan, I.G.: Intermolecular Interactions: Physical Picture, Computational Methods, Model Potentials. Wiley, New York (2006) Kaxiras, E.: Atomic and Electronic Structure of Solids. Cambridge University Press, Cambridge (2010) Likos, C.N.: Effective interactions in soft condensed matter physics. Phys. Rep. 348(4–5), 267–439 (2011) Luo, S., Ren, X., Wei, J.: Non-hexagonal lattices from a two species interacting system. Preprint. arXiv:1902.09611 (2019) Martin, A.M., Marchant, N.G., O’Dell, D.H.J., Parker, N.G.: Vortices and vortex lattices in quantum ferrofluids. J. Phys. Condens. Matter 29(2017), 103004 (2017) Montgomery, H.L.: Minimal theta functions. Glasg. Math. J. 30(1), 75–85 (1988) Mueller, E.J., Ho, T.-L.: Two-component Bose–Einstein condensates with a large number of vortices. Phys. Rev. Lett. 88(18) (2002) Nier, F.: A propos des functions Thêta et des réseaux d’Abrikosov. In Séminaire EDP-Ecole Polytechnique, 2006–2007 Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986) Poole, C.: Encyclopedic Dictionary of Condensed Matter Physics, 1st edn. Elsevier, Amsterdam (2004) Poularikas, A.D.: The Transforms and Applications Handbook. CRC Press, Boca Raton (1996) Rankin, R.A.: A minimum problem for the Epstein zeta-function. Proc. Glasg. Math. Assoc. 1(4), 149–158 (1953) Rechtsman, M.C., Stillinger, F.H., Torquato, S.: Designed interaction potentials via inverse methods for self-assembly. Phys. Rev. E 73, 011406 (2006) Regev, O., Stephens-Davidowitz, N.: An inequality for Gaussians on lattices. SIAM J. Discrete Math. 31(2), 749–757 (2017) Rougerie, N., Serfaty, S.: Higher dimensional coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69(3), 519–605 (2016) Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012) Sandier, E., Serfaty, S.: 2d Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015) Sarnak, P., Strömbergsson, A.: Minima of Epstein’s zeta function and heights of flat Tori. Invent. Math. 165, 115–151 (2006) Stillinger, F.H.: Phase transitions in the Gaussian core system. J. Chem. Phys. 65, 3968 (1976) Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications II. Springer, New York (1988) Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (2004) Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185(3), 991–1015 (2017) Zachary, C.Z., Stillinger, F.H., Torquato, S.: Gaussian core model phase diagram and pair correlations in high Euclidean dimensions. J. Chem. Phys. 128(22), 224505 (2008)