Minimal Penalties for Gaussian Model Selection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramovich, F., Benjamini, Y., Donoho, D.L., Johnstone, I.M.: Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34, (2006)
Akaike H. (1973). Information theory and an extension of the maximum likelihood principle. In: Petrov P.N., Csaki F. (eds) Proceedings 2nd International Symposium on Information Theory. Akademia Kiado, Budapest, pp. 267–281
Akaike H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Control 19:716–723
Akaike H. A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Statist. Math. 30, Part A, 9–14 (1978)
Amemiya T. (1985). Advanced Econometrics. Basil Blackwell, Oxford
Barron A.R., Birgé L., Massart P. (1999). Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113:301–415
Barron A.R., Cover T.M. (1991). Minimum complexity density estimation. IEEE Trans. Inf. Theory 37:1034–1054
Birgé, L.: An alternative point of view on Lepski’s method. In: de Gunst, M.C.M., Klaassen, C.A.J., van der Vaart, A.W. (eds.) State of the Art in Probability and Statistics, Festschrift for Willem R. van Zwet, Institute of Mathematical Statistics, Lecture Notes–Monograph Series, Vol. 36. 113–133 (2001)
Birgé L., Massart P. (1998). Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4:329–375
Birgé, L., Massart, P.: A generalized C p criterion for Gaussian model selection. Technical Report No 647. Laboratoire de Probabilités, Université Paris VI (2001) http://www.proba. jussieu.fr/mathdoc/preprints/index.html#2001
Daniel C., Wood F.S. (1971). Fitting Equations to Data. Wiley, New York
Draper N.R., Smith H. (1981). Applied Regression Analysis, 2nd edn. Wiley, New York
Efron B., Hastie R., Johnstone I.M., Tibshirani R. (2004). Least angle regression. Ann. Statist. 32:407–499
Feller W. (1968). An Introduction to Probability Theory and its Applications, Vol I (3rd edn). Wiley, New York
George E.I., Foster D.P. (2000). Calibration and empirical Bayes variable selection. Biometrika 87:731–747
Gey S., Nédélec E. (2005). Model selection for CART regression trees. IEEE Trans. Inf. Theory 51:658–670
Guyon X., Yao J.F. (1999). On the underfitting and overfitting sets of models chosen by order selection criteria. Jour. Multivar. Anal. 70:221–249
Hannan E.J., Quinn B.G. (1979). The determination of the order of an autoregression. J.R.S.S., B 41:190–195
Hoeffding W. (1963). Probability inequalities for sums of bounded random variables. J.A.S.A. 58:13–30
Hurvich K.L., Tsai C.-L. (1989). Regression and time series model selection in small samples. Biometrika 76:297–307
Johnstone, I.: Chi-square oracle inequalities. In: de Gunst, M.C.M., Klaassen, C.A.J. van der Vaart, A.W. (eds.) State of the Art in Probability and Statistics, Festschrift for Willem R. van Zwet, Institute of Mathematical Statistics, Lecture Notes–Monograph Series, Vol. 36. pp. 399–418 (2001)
Kneip A. (1994). Ordered linear smoothers. Ann. Statist. 22:835–866
Lavielle M., Moulines E. (2000). Least Squares estimation of an unknown number of shifts in a time series. J. Time Series Anal. 21:33–59
Lebarbier E. (2005). Detecting multiple change-points in the mean of a Gaussian process by model selection. Signal Proces. 85:717–736
Li K.C. (1987). Asymptotic optimality for C p , C L , cross-validation, and generalized cross-validation: Discrete index set. Ann. Statist. 15:958–975
Loubes, J.-M., Massart, P.: Discussion of “Least angle regression” by Efron, B., Hastie, R., Johnstone, I., Tibshirani, R. Ann. Statist. 32, 460–465 (2004).
McQuarrie A.D.R., Tsai C.-L. (1998). Regression and Time Series Model Selection. World Scientific, Singapore
Mitchell T.J., Beauchamp J.J. (1988). Bayesian variable selection in linear regression. J.A.S.A. 83:1023–1032
Polyak B.T., Tsybakov A.B. (1990). Asymptotic optimality of the C p -test for the orthogonal series estimation of regression. Theory Probab. Appl. 35:293–306
Wallace D.L. (1959). Bounds on normal approximations to Student’s and the chi-square distributions. Ann. Math. Stat. 30:1121–1130
Whittaker E.T., Watson G.N. (1927). A Course of Modern Analysis. Cambridge University Press, London
Yang Y. (2005). Can the strenghths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 92:937–950