Miniaturized in-plane π-type thermoelectric device composed of a II–IV semiconductor thin film prepared by microfabrication

Materials Today Energy - Tập 28 - Trang 101075 - 2022
Isao Ohkubo1, Masayuki Murata2, Mariana S.L. Lima1,3, Takeaki Sakurai3, Yuko Sugai4, Akihiko Ohi4, Takashi Aizawa1, Takao Mori5,3
1International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
3Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
4Nanotechnology Innovation Station, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
5International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Tài liệu tham khảo

Yazawa, 2021, vol. 7 Liu, 2020, Thermoelectric generation via tellurene for wearable applications: recent advances, research challenges, and future perspectives, Mater. Today Energy, 20 Singh, 2021, Thermoelectric energy harvesting using cement-based composites: a review, Mater. Today Energy, 21 Maksymuk, 2021, Highly efficient bismuth telluride–based thermoelectric microconverters, Mater. Today Energy, 21 Cao, 2022, Flexible elemental thermoelectrics with ultra-high power density, Mater. Today Energy, 25 Yan, 2018, Review of micro thermoelectric generator, J. Microelectromech. Syst., 27, 1, 10.1109/JMEMS.2017.2782748 Petsagkourakis, 2018, Thermoelectric materials and applications for energy harvesting power generation, Sci. Technol. Adv. Mater., 19, 836, 10.1080/14686996.2018.1530938 Tarancon, 2019, Powering the IoT revolution with heat, Nat. Electron., 2, 270, 10.1038/s41928-019-0276-4 Nandihalli, 2020, Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics, Nano Energy, 78, 10.1016/j.nanoen.2020.105186 Yanagisawa, 2020, Nanostructured planar-type uni-leg Si thermoelectric generators, APEX, 13 Yan, 2022, High-performance thermoelectrics and challenges for practical devices, Nat. Mater., 21, 503, 10.1038/s41563-021-01109-w Koumoto, 2013 Corkill, 1993, Structural, bonding, and electronic properties of IIA-IV antifluorite compounds, Phys. Rev. B, 48, 17138, 10.1103/PhysRevB.48.17138 Zaitsev, 2006, Highly effective Mg2Si1−xSnx thermoelectrics, Phys. Rev. B, 74, 10.1103/PhysRevB.74.045207 Nolas, 2007, Transport properties of polycrystalline Mg2Si1−ySby (0 ≤ y < 0.4), Phys. Rev. B, 76, 10.1103/PhysRevB.76.235204 Kutorasinski, 2014, Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge, and Mg2Sn, Phys. Rev. B, 89, 10.1103/PhysRevB.89.115205 Santos, 2018, Recent progress in magnesium-based thermoelectric materials, J. Mater. Chem., 6, 3328, 10.1039/C7TA10415D de Boor, 2017, Recent progress in p-type thermoelectric magnesium silicide based solid solutions, Mater. Today Energy, 4, 105, 10.1016/j.mtener.2017.04.002 Yin, 2016, Optimization of the electronic band structure and the lattice thermal conductivity of solid solutions according to simple calculations: a canonical example of the Mg2Si1–x–yGexSny ternary solid solution, Chem. Mater., 28, 5538, 10.1021/acs.chemmater.6b02308 Saito, 2020, Enhancing the thermoelectric performance of Mg2Sn single crystals via point defect engineering and Sb doping, ACS Appl. Mater. Interfaces, 12, 57888, 10.1021/acsami.0c17462 Lima, 2021, Improvement of power factor in the room temperature range of Mg2Sn1−xGex, Jpn. J. Appl. Phys., 60, 10.35848/1347-4065/abd9cd Aizawa, 2019, Fabrication of Mg2Sn(111) film by molecular beam epitaxy, J. Vac. Sci. Technol. A, 37, 10.1116/1.5122844 Chandrasekhar, 1959, The Seebeck coefficient of bismuth single crystals, J. Phys. Chem. Solid., 11, 268, 10.1016/0022-3697(59)90225-2 Damodara Das, 1987, Size and temperature effects on the Seebeck coefficient of thin bismuth films, Phys. Rev. B, 35, 5990, 10.1103/PhysRevB.35.5990 Park, 2016, Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure, AIP Adv., 6, 10.1063/1.4955000 Tsujii, 2020, Thin-film thermoelectric generator based on polycrystalline SiGe formed by Ag-induced layer exchange, Appl. Phys. Lett., 117, 10.1063/5.0021880 Min, 1992, Optimization of thermoelectric module geometry for ‘waste heat’ electric power generation, J. Power Sources, 38, 253, 10.1016/0378-7753(92)80114-Q Rowe, 2012 Liu, 2021, Demonstration of ultrahigh thermoelectric efficiency of ∼7.3 % in Mg3Sb2/MgAgSb module for low temperature energy harvesting, Joule, 5, 1196, 10.1016/j.joule.2021.03.017 Oualid, 2021, High power density thermoelectric generators with skutterudites, Adv. Energy Mater., 11 Takashiri, 2007, Fabrication and characterization of bismuth–telluride-based alloy thin film thermoelectric generators by flash evaporation method, Sens. Actuators A, 138, 329, 10.1016/j.sna.2007.05.030 Hmood, 2013, Thermoelectric generators using p-Pb0.925Yb0.075Te:Te and n-Pb0.925Yb0.075Se0.2Te0.8 thin films prepared by the thermal evaporation method, J. Electron. Mater., 42, 1146, 10.1007/s11664-013-2542-y Kao, 2010, Fabrication and characterization of CMOS-MEMS thermoelectric micro generators, Sensors, 10, 1315, 10.3390/s100201315 Mizoshiri, 2014, Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method, APEX, 7 Lima, 2021, High power factor in epitaxial Mg2Sn thin films via Ga doping, Appl. Phys. Lett., 119, 10.1063/5.0074707