Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology
Tóm tắt
A new Micro-Opto-Mechanical System (MOMS) technology for the fabrication of optoacoustic probes on optical fiber is presented. The technology is based on the thermoelastic emission of ultrasonic waves from patterned carbon films for generation and on extrinsic polymer Fabry-Perot acousto-optical transducers for detection, both fabricated on miniaturized single-crystal silicon frames used to mount the ultrasonic transducers on the tip of an optical fiber. Thanks to the fabrication process adopted, high miniaturization levels are reached in the MOMS devices, demonstrating fiber-optic emitters and detectors with minimum diameter around 350 and 250 μm respectively. A thorough functional testing of the ultrasound emitters mounted on 200 and 600 μm diameter optical fibers is presented, in which the fiber-optic emitter with a diameter of 200 μm shows generated acoustic pressures with peak-to-peak value up to 2.8 MPa with rather flat emission spectra extended beyond 150 MHz. The possibility to use the presented optoacoustic sources in conjunction with the fiber-optic acousto-optical detectors within a minimally invasive probe is also demonstrated by successfully measuring the ultrasonic echo reflected from a rigid surface immersed in water with various concentration of scatterers. The resulting spectra highlight the possibility to discriminate the effects due to frequency selective attenuation in a very wide range of frequencies within a biological medium using the presented fiber-optic probes.
Tài liệu tham khảo
A. Acquafresca, E. Biagi, L. Masotti, D. Menichelli, Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1325–1335 (2003)
L. Belsito, F. Mancarella, M. Ferri, A. Roncaglia, E. Biagi, S. Cerbai, L. Masotti, G. Masetti, N. Speciale, Micro-opto-mechanical technology for the fabrication of highly miniaturized fiber-optic ultrasonic detectors. Tech. Dig. Transducers 2011, 594–597 (2011)
E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, Photoacoustic generation: optical fiber ultrasonic sources for non destructive evaluation and clinical diagnosis. Opt. Rev. 4, 481–483 (1997)
E. Biagi, F. Margheri, L. Masotti, and D. Menichelli, Opto-acoustic generator of ultrasound waves from laser energy supplied via optical fiber. U.S. Patent Application Number: 09/920,123. U.S. Publication Number: US20010055435 A1 (2001)
E. Biagi, F. Margheri, D. Menichelli, Efficient laser-ultrasound generation by using heavily absorbing films as targets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001)
E. Biagi, S. Cerbai, P. Gambacciani, A. Acquafresca and L. Masotti, Fully Fiber Optic Ultrasonic Probes for Virtual Biopsy. Proc. IEEE International Ultrasonics Symposium 2006, 556–559 (2006)
E. Biagi, S. Cerbai, P. Gambacciani, L. Masotti, Fiber optic broadband ultrasonic probe. Proc. IEEE Sensors 2008, 363–366 (2008)
E. Biagi, S. Granchi, E. Vannacci, L. Lucarini, L. Masotti, Tissue characterization in echographic spectral hyperspace: Breast pathologies differentiation. Proc. IEEE International Ultrasonics Symposium 2010, 1388–1391 (2010)
T. Buma, M. Spisar, M. O’Donnell, High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl. Phys. Lett. 79, 548–550 (2001)
Y. Chih-Kuang, C. Jia-Jiun, L. Meng-Lin, L. Jer-Junn, J.C. Jia-Jin, In vivo imaging of blood flow in the mouse Achilles tendon using high-frequency ultrasound. Ultrasonics 49, 226–230 (2009)
A. Denoyer, F. Ossant, B. Arbeille, F. Fetissof et al., Very-high-frequency ultrasound corneal imaging as a new tool for early diagnosis of ocular surface toxicity in rabbits treated with a preserved glaucoma drug. Ophthalmic Res. 40, 298–308 (2008)
P.A. Fomitchov, A.K. Kromine, S. Krishnaswamy, Photoacoustic probes for nondestructive testing and biomedical applications. Appl. Opt. 41, 4451–4459 (2002)
K.C. Graham, L.A. Wirtzfeld, L.T. MacKenzie, C.O. Postenka, A.C. Groom, I.C. MacDonald, A. Fenster, J.C. Lacefield, A.F. Chambers, Three-dimensional High-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res. 65, 5231–5237 (2005)
Y. Haga, M. Fujita, K. Nakamura, C.J. Kim, M. Esashi, Batch fabrication of intravascular forward-looking ultrasonic probe. Sensors Actuators A 104, 40–43 (2003)
Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, L.J. Guo, Optical generation of high frequency ultrasound using two-dimensional gold nanostructure. Appl. Phys. Lett. 89, 093901 (2006)
Y. Hou, S. Ashkenazi, S.W. Huang, M. O’Donnell, Improvements in optical generation of high-frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 682–686 (2007)
Y. Hou, S. Ashkenazi, S.-W. Huang, M. O’Donnell, An integrated optoacoustic transducer combining etalon and black PDMS structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008a)
Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, Thin polymer etalon arrays for high-resolution photoacoustic imaging. J. Biomed. Opt. 13(6), 064033 (2008b)
S. Hu, L.V. Wang, Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 15(1), 011101 (2010)
G.S. Kyno, Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Prentice Hall PTR, 164–171 (1987)
H. Lamela, D. Gallego, A. Oraevsky, Optoacoustic imaging using fiber-optic interferometric sensors. Opt. Lett. 34(23), 3695–3697 (2009)
J. Mamou, A. Coron, M. Hata, J. Machi, E. Yanagihara, P. Laugier, E.J. Feleppa, High-frequency quantitative ultrasound imaging of cancerous lymph nodes. Jpn. J. Appl. Phys. 48, 07GK08 (2009)
P. Morris, A. Hurrell, A. Shaw, E. Zhang, P. Beard, A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 125, 3611–3622 (2009)
T.A. Ritter, K.K. Shung, W. Cao, T.R. Shrout, A 30 MHz composite ultrasound array for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 217–230 (2002)
C.B. Scruby, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer, Quantitative studies of thermally generated elastic waves in laser irradiated metals. J. Appl. Phys. 51, 6210–6216 (1980)
C. Sheaff, S. Ashkenazi, A polyimide-etalon thin film structure for all-optical high-frequency ultrasound transduction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 2254–2261 (2012)
K.A. Snook, C.-H. Hu, T.R. Shrout, K.K. Shung, High-frequency ultrasound annular-array imaging. Part I: array design and fabrication. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 300–308 (2006)
R.M. White, Generation of elastic waves by transient surface heating. J. Appl. Phys. 14, 3559–3567 (1963)
Z. Yuan, Z. Wang, R. Pan, J. Liu, H. Cohen, Y. Pan, High-resolution imaging diagnosis and staging of bladder cancer: comparison between optical coherence tomography and high-frequency ultrasound. J. Biomed. Opt. 13, 054007 (2008)
E.Z. Zhang, J.G. Laufer, R.B. Pedley, P.C. Beard, In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54, 1035–1046 (2009)
C. Zhang, K. Maslov, J. Yao, L.V. Wang, In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer. J. Biomed. Opt. 17, 116016 (2012)