Miniaturized Ceramic-Based Microbial Fuel Cell for Efficient Power Generation From Urine and Stack Development
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aelterman, 2006, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Commun. Agric. Appl. Biol. Sci., 71, 63, 10.1021/es0525511
Baudler, 2014, Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes, Front. Energy Res., 2, 30, 10.3389/fenrg.2014.00030
Cusick, 2011, Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater, Appl. Microbiol. Biotechnol., 89, 2053, 10.1007/s00253-011-3130-9
Degrenne, 2012, Electrical energy generation from a large number of microbial fuel cells operating at maximum power point electrical load, J. Power Sources, 205, 188, 10.1016/j.jpowsour.2012.01.082
Do, 2018, Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review, Sci. Total Environ., 639, 910, 10.1016/j.scitotenv.2018.05.136
Dong, 2015, A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode, Bioresour. Technol., 195, 66, 10.1016/j.biortech.2015.06.026
Gajda, , Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs, Bioelectrochemistry, 104, 58, 10.1016/j.bioelechem.2015.03.001
Gajda, 2016, Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser, Sci. Rep., 6, 25571, 10.1038/srep25571
Gajda, , Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture, Water Res., 86, 108, 10.1016/j.watres.2015.08.014
Gajda, 2018, Improved power and long term performance of Microbial Fuel Cell with Fe-N-C catalyst in air-breathing cathode, Energy, 144, 1073, 10.1016/j.energy.2017.11.135
Gajda, , Ceramic MFCs with internal cathode producing sufficient power for practical applications, Int. J. Hydrogen Energy, 40, 14627, 10.1016/j.ijhydene.2015.06.039
Gajda, 2017, Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals, Int. J. Hydrogen Energy, 42, 1813, 10.1016/j.ijhydene.2016.06.161
Ge, 2016, Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost, Environ. Sci. Water Res. Technol., 2, 274, 10.1039/C6EW00020G
Biological fuel cells with sulphide storage capacity128133 HabermannW. PommerE. Appl. Microbiol. Biotechnol.351991
Hiegemann, 2016, An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant, Bioresour. Technol., 218, 115, 10.1016/j.biortech.2016.06.052
Ieropoulos, 2008, Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability, Int. J. Energy Res., 32, 1228, 10.1002/er.1419
Ieropoulos, 2010, Improved energy output levels from small-scale microbial fuel cells, Bioelectrochemistry, 78, 44, 10.1016/j.bioelechem.2009.05.009
Ieropoulos, 2016, Pee power urinal – microbial fuel cell technology field trials in the context of sanitation, Environ. Sci. Water Res. Technol., 2, 336, 10.1039/C5EW00270B
Khan, 2017, Bioelectrochemical conversion of waste to energy using microbial fuel cell technology, Process Biochem., 57, 141, 10.1016/J.PROCBIO.2017.04.001
Kim, 2009, Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode, J. Power Sources, 187, 393, 10.1016/j.jpowsour.2008.11.020
Kim, 2010, Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate, Bioresour. Technol., 101, 1190, 10.1016/j.biortech.2009.09.023
Kuntke, 2014, Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell, Int. J. Hydrogen Energy, 39, 4771, 10.1016/j.ijhydene.2013.10.089
Kuntke, 2012, Ammonium recovery and energy production from urine by a microbial fuel cell, Water Res., 46, 2627, 10.1016/j.watres.2012.02.025
Ledezma, 2013, MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions, Bioresour. Technol., 134, 158, 10.1016/j.biortech.2013.01.119
Liang, 2018, One-year operation of 1000-l modularized microbial fuel cell for municipal wastewater treatment, Water Res., 141, 1, 10.1016/j.watres.2018.04.066
Logan, 2015, Assessment of microbial fuel cell configurations and power densities, Environ. Sci. Technol. Lett., 2, 206, 10.1021/acs.estlett.5b00180
Merino Jimenez, 2017, Electricity and catholyte production from ceramic MFCs treating urine, Int. J. Hydrogen Energy, 42, 1791, 10.1016/j.ijhydene.2016.09.163
Merino-Jimenez, 2016, Carbon-based air-breathing cathodes for microbial fuel cells, Catalysts, 6, 127, 10.3390/catal6090127
Pant, 2010, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol., 101, 1533, 10.1016/j.biortech.2009.10.017
Papaharalabos, 2014, Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks, J. Power Sources, 272, 34, 10.1016/j.jpowsour.2014.07.187
Pasternak, 2016, Comprehensive study on ceramic membranes for low-cost microbial fuel cells, ChemSusChem, 9, 88, 10.1002/cssc.201501320
Pasternak, 2017, Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring, Sensors Actuators. B Chem., 244, 815, 10.1016/J.SNB.2017.01.019
Popat, 2016, Critical transport rates that limit the performance of microbial electrochemistry technologies, Bioresour. Technol., 215, 265, 10.1016/j.biortech.2016.04.136
Qian, 2011, Miniaturizing microbial fuel cells, Trends Biotechnol., 29, 62, 10.1016/J.TIBTECH.2010.10.003
Ren, 2014, Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length, Biosens. Bioelectron., 61, 587, 10.1016/j.bios.2014.05.037
Torres, 2008, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872, 10.1002/bit.21821
Tsai, 2017, Capillary force pumping fluid for glucose oxidase enzymatic fuel cells, Microsyst. Technol., 23, 3927, 10.1007/s00542-015-2728-8
Walter, 2016, From single MFC to cascade configuration: the relationship between size, hydraulic retention time and power density, Sustain. Energy Technol. Assessments, 14, 74, 10.1016/j.seta.2016.01.006
Wang, 2011, Micro-sized microbial fuel cell: a mini-review, Bioresour. Technol., 102, 235, 10.1016/j.biortech.2010.07.007