Mini-review on Glycolysis and Cancer

Journal of Cancer Education - Tập 28 Số 3 - Trang 454-457 - 2013
Muhammad Akram1
1Department of Eastern Medicine and Surgery, Faculty of Medical and Health Sciences, The University of Poonch, Azad Jammu and Kashmir, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bacci G, Capanna R, Orlandi M (1985) Prognostic significance of serum lactic acid dehydrogenase in Ewing’s tumor of bone. Ric Clin Lab 15:89–96

Veramendi J, Fernie AR, Leisse A, Willmitzer L, Trethewey RN (2002) Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49:491–501

Tang GQ, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–93

Goldblatt H, Cameron C (1953) Induced malignancy in cells from rat myocardium subjected to intermittent anaerobiosis during long propagation in vitro. J Exp Med 97:525–552

Druml W, Kleinberger G, Neumann E, Pichler M, Gassner A (1981) [Acute leukemia associated with lactic acidosis] [article in German]. Schweiz Med. Wochenschr 111:146–150

Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD (2008) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267(2):742–750

Pérez-Rodríguez J, Sánchez-Jiménez F, Márquez FJ, Medina MA, Quesada AR, Núñez de Castro I (1987) Malate-citrate cycle during glycolysis and glutaminolysis in Ehrlich ascites tumor cells. Biochimie 69(5):469–474

Warburg O (1910) The metabolism of tumours. J Physiol Chem 56:66–305

Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

Schwickert G, Walenta S, Sundfør K, Rofstad EK, Mueller-Klieser W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759

Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2009) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120(1):253–260

Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

Altenberg B, Greulich KO (2008) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6):1014–1020

Broadley K, Larsen L, Herst PM, Smith RA, Berridge MV, McConnell MJ (2011) The novel phloroglucinol PMT7 kills glycolytic cancer cells by blocking autophagy and sensitizing to nutrient stress. J Cell Biochem 112(7):1869–1879

Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, Jeong SI, Kang MJ, Kim NH, Kim HJ, Chi SG (2012) Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res 72(16):4097–4109

Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B (2002) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17(10):1533–1545

Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y, Feng Y, Li L, Wang Y, Liu X, Chen H, Liu XY, Ji H (2012) MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 287(27):23227–2335

Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. ChemMedChem 7(8):1318–1350

Sukhatme VP, Chan B (2012) Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett 586(16):2389–2395

Wang MD, Shi YF, Wang H, Wang JL, Ma WB, Wang RZ. Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme. Chin Med J 124(17):2611–2615)

Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916

Guyton A, Hall J (1996) Textbook of medical physiology, 9th edn. W.B. Saunders, Philadelphia, PA, pp 868–870

Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2011) Fructose 2,6-bisphosphate activates pyrophosphate: fructose 6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263

Mulquiney PJ, Bubb WA, Kuchel PW. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 342 (3):567–580