Mini review: Update on bioaugmentation in anaerobic processes for biogas production

Anaerobe - Tập 46 - Trang 3-12 - 2017
Alexis Nzila1
1Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 468, Dhahran 31261, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mao, 2015, Review on research achievements of biogas from anaerobic digestion, Renew. Sustain. Energy Rev., 45, 540, 10.1016/j.rser.2015.02.032

Divya, 2015, A review on current aspects and diverse prospects for enhancing biogas production in sustainable means, Renew. Sustain. Energy Rev., 42, 690, 10.1016/j.rser.2014.10.055

Appels, 2011, Anaerobic digestion in global bio-energy production: potential and research challenges, Renew. Sustain. Energy Rev., 15, 4295, 10.1016/j.rser.2011.07.121

Shen, 2015, An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs, Renew. Sustain. Energy Rev., 50, 346, 10.1016/j.rser.2015.04.129

Surendra, 2014, Biogas as a sustainable energy source for developing countries: opportunities and challenges, Renew. Sustain. Energy Rev., 31, 846, 10.1016/j.rser.2013.12.015

Edwards, 2015, A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia, Renew. Sustain. Energy Rev., 52, 815, 10.1016/j.rser.2015.07.112

Deng, 2014, Biogas as a sustainable energy source in China: regional development strategy application and decision making, Renew. Sustain. Energy Rev., 35, 294, 10.1016/j.rser.2014.04.031

Merlin Christy, 2014, A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms, Renew. Sustain. Energy Rev., 34, 167, 10.1016/j.rser.2014.03.010

Jain, 2015, A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste, Renew. Sustain. Energy Rev., 52, 142, 10.1016/j.rser.2015.07.091

Chen, 2014, Toxicants inhibiting anaerobic digestion: a review, Biotechnol. Adv., 32, 1523, 10.1016/j.biotechadv.2014.10.005

Lebeau, 2008, Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review, Environ. Pollut., 153, 497, 10.1016/j.envpol.2007.09.015

Mrozik, 2010, Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds, Microbiol. Res., 165, 363, 10.1016/j.micres.2009.08.001

Semrany, 2012, Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (Bio-ROCs), Biochem. Eng. J., 69, 75, 10.1016/j.bej.2012.08.017

Tyagi, 2011, Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes, Biodegradation, 22, 231, 10.1007/s10532-010-9394-4

Nzila, 2016, Bioaugmentation: an emerging strategy of industrial wastewater treatment for reuse and discharge, Int. J. Environ. Res. Public Health, 13, 846, 10.3390/ijerph13090846

Gerardi, 2003

Chaudhary, 2013, Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments, Appl. Microbiol. Biotechnol., 97, 7553, 10.1007/s00253-013-5102-8

Chen, 2008, Inhibition of anaerobic digestion process: a review, Bioresour. Technol., 99, 4044, 10.1016/j.biortech.2007.01.057

De Vrieze, 2012, Methanosarcina: the rediscovered methanogen for heavy duty biomethanation, Bioresour. Technol., 112, 1, 10.1016/j.biortech.2012.02.079

Carlsson, 2012, The effects of substrate pre-treatment on anaerobic digestion systems: a review, Waste Manag., 32, 1634, 10.1016/j.wasman.2012.04.016

Kondusamy, 2014, Pre-treatment and anaerobic digestion of food waste for high rate methane production – a review, J. Environ. Chem. Eng., 2, 1821

Carrere, 2016, Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application, Bioresour. Technol., 199, 386, 10.1016/j.biortech.2015.09.007

Zhang, 2004, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems, Biotechnol. Bioeng., 88, 797, 10.1002/bit.20282

Mshandete, 2005, Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment, Water Res., 39, 1569, 10.1016/j.watres.2004.11.037

Nielsen, 2007, Bioaugmentation of a two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion concept for improvement of the methane yield from cattle manure, Biotechnol. Bioeng., 97, 1638, 10.1002/bit.21342

Weiss, 2010, Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite, Water Res., 44, 1970, 10.1016/j.watres.2009.11.048

Zhong, 2011, Effect of biological pretreatments in enhancing corn straw biogas production, Bioresour. Technol., 102, 11177, 10.1016/j.biortech.2011.09.077

Zhang, 2011, Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium, Bioresour. Technol., 102, 8899, 10.1016/j.biortech.2011.06.061

Čater, 2015, Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria, Bioresour. Technol., 186, 261, 10.1016/j.biortech.2015.03.029

Martin-Ryals, 2015, Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms, Bioresour. Technol., 189, 62, 10.1016/j.biortech.2015.03.069

Peng, 2014, Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum, Bioresour. Technol., 152, 567, 10.1016/j.biortech.2013.11.067

Rasit, 2015, Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview, Renew. Sustain. Energy Rev., 45, 351, 10.1016/j.rser.2015.01.066

Cavaleiro, 2009, Continuous high rate anaerobic treatment of oleic acid based wastewater is possible after a step feeding start-up, Environ. Sci. Technol., 43, 2931, 10.1021/es8031264

Cavaleiro, 2010, Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi, Water Res., 44, 4940, 10.1016/j.watres.2010.07.039

Cirne, 2006, Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste, J. Chem. Technol. Biotechnol., 81, 1745, 10.1002/jctb.1597

Pap, 2015, Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation, Bioresour. Technol., 177, 375, 10.1016/j.biortech.2014.11.021

Bagi, 2007, Biotechnological intensification of biogas production, Appl. Microbiol. Biotechnol., 76, 473, 10.1007/s00253-007-1009-6

Herbel, 2010, Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses, Environ. Technol., 31, 1017, 10.1080/09593330.2010.484075

Kovacs, 2013, Improvement of biogas production by bioaugmentation, Biomed. Res. Int., 2013, 482653, 10.1155/2013/482653

Ács, 2015, Bioaugmentation of biogas production by a hydrogen-producing bacterium, Bioresour. Technol., 186, 286, 10.1016/j.biortech.2015.02.098

Zhang, 2015, Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw, Bioresour. Technol., 179, 306, 10.1016/j.biortech.2014.12.022

Neumann, 2011, Impact of bioaugmentation by compost on the performance and ecology of an anaerobic digester fed with energy crops, Bioresour. Technol., 102, 2931, 10.1016/j.biortech.2010.11.068

Kovács, 2004, Improvement of biohydrogen production and intensification of biogas formation, Rev. Environ. Sci. BioTechnol., 3, 321, 10.1007/s11157-004-7460-2

Appels, 2008, Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combus Sci., 34, 755, 10.1016/j.pecs.2008.06.002

Nielsen, 2008, Strategies for optimizing recovery of the biogas process following ammonia inhibition, Bioresour. Technol., 99, 7995, 10.1016/j.biortech.2008.03.049

Fotidis, 2014, Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate, Environ. Sci. Technol., 48, 7669, 10.1021/es5017075

Akila, 2010, Stimulation of biomethanation by Clostridium sp. PXYL1 in coculture with a Methanosarcina strain PMET1 at psychrophilic temperatures, J. Appl. Microbiol., 108, 204, 10.1111/j.1365-2672.2009.04412.x

Schauer-Gimenez, 2010, Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure, Water Res., 44, 3555, 10.1016/j.watres.2010.03.037

Botheju, 2011, Oxygen effects in anaerobic digestion – a review, Open Waste Manag. J., 4, 1, 10.2174/1876400201104010001

Tale, 2015, Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community, Water Res., 70, 138, 10.1016/j.watres.2014.11.037

Costa, 2012, Effects of pre-treatment and bioaugmentation strategies on the anaerobic digestion of chicken feathers, Bioresour. Technol., 120, 114, 10.1016/j.biortech.2012.06.047

Nkemka, 2015, Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail, Bioresour. Technol., 185, 79, 10.1016/j.biortech.2015.02.100

Westerholm, 2012, Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia, Appl. Environ. Microbiol., 78, 7619, 10.1128/AEM.01637-12

Goud, 2014, Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load, Bioresour. Technol., 165, 223, 10.1016/j.biortech.2014.03.049

Ramadan, 1990, Inoculum size as a factor limiting success of inoculation for biodegradation, Appl. Environ. Microbiol., 56, 1392, 10.1128/AEM.56.5.1392-1396.1990

Lyon, 2013, Bioaugmentation for groundwater remediation: an overview, 1

Eberl, 1997, Use of green fluorescent protein as a marker for ecological studies of activated sludge communities, FEMS Microbiol. Lett., 149, 77, 10.1111/j.1574-6968.1997.tb10311.x

Herrero, 2015, Bioaugmentation and its application in wastewater treatment: a review, Chemosphere, 140, 119, 10.1016/j.chemosphere.2014.10.033

Lessner, 2010, An engineered methanogenic pathway derived from the domains Bacteria and Archaea, mBio, 1, 10.1128/mBio.00243-10

Sedlak, 2004, Production of ethanol from cellulosic biomass hydrolysates using genetically engineered saccharomyces yeast capable of cofermenting glucose and xylose, App. Biochem. Biotechnol., 114, 403, 10.1385/ABAB:114:1-3:403

Ganzoury, 2015, Impact of nanotechnology on biogas production: a mini-review, Renew. Sustain. Energy Rev., 50, 1392, 10.1016/j.rser.2015.05.073

Casals, 2014, Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production, Small, 10, 2801, 10.1002/smll.201303703

Yang, 2016, Surface-Nanoengineered bacteria for efficient local enrichment and biodegradation of aqueous organic wastes: using phenol as a model compound, Adv. Mater., 28, 2916, 10.1002/adma.201505493

Hou, 2016, Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain, J. Nanobiotechnol., 14, 5, 10.1186/s12951-016-0158-0