Mini review: Update on bioaugmentation in anaerobic processes for biogas production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mao, 2015, Review on research achievements of biogas from anaerobic digestion, Renew. Sustain. Energy Rev., 45, 540, 10.1016/j.rser.2015.02.032
Divya, 2015, A review on current aspects and diverse prospects for enhancing biogas production in sustainable means, Renew. Sustain. Energy Rev., 42, 690, 10.1016/j.rser.2014.10.055
Appels, 2011, Anaerobic digestion in global bio-energy production: potential and research challenges, Renew. Sustain. Energy Rev., 15, 4295, 10.1016/j.rser.2011.07.121
Shen, 2015, An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs, Renew. Sustain. Energy Rev., 50, 346, 10.1016/j.rser.2015.04.129
Surendra, 2014, Biogas as a sustainable energy source for developing countries: opportunities and challenges, Renew. Sustain. Energy Rev., 31, 846, 10.1016/j.rser.2013.12.015
Edwards, 2015, A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia, Renew. Sustain. Energy Rev., 52, 815, 10.1016/j.rser.2015.07.112
Deng, 2014, Biogas as a sustainable energy source in China: regional development strategy application and decision making, Renew. Sustain. Energy Rev., 35, 294, 10.1016/j.rser.2014.04.031
Merlin Christy, 2014, A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms, Renew. Sustain. Energy Rev., 34, 167, 10.1016/j.rser.2014.03.010
Jain, 2015, A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste, Renew. Sustain. Energy Rev., 52, 142, 10.1016/j.rser.2015.07.091
Chen, 2014, Toxicants inhibiting anaerobic digestion: a review, Biotechnol. Adv., 32, 1523, 10.1016/j.biotechadv.2014.10.005
Lebeau, 2008, Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review, Environ. Pollut., 153, 497, 10.1016/j.envpol.2007.09.015
Mrozik, 2010, Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds, Microbiol. Res., 165, 363, 10.1016/j.micres.2009.08.001
Semrany, 2012, Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (Bio-ROCs), Biochem. Eng. J., 69, 75, 10.1016/j.bej.2012.08.017
Tyagi, 2011, Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes, Biodegradation, 22, 231, 10.1007/s10532-010-9394-4
Nzila, 2016, Bioaugmentation: an emerging strategy of industrial wastewater treatment for reuse and discharge, Int. J. Environ. Res. Public Health, 13, 846, 10.3390/ijerph13090846
Gerardi, 2003
Chaudhary, 2013, Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments, Appl. Microbiol. Biotechnol., 97, 7553, 10.1007/s00253-013-5102-8
Chen, 2008, Inhibition of anaerobic digestion process: a review, Bioresour. Technol., 99, 4044, 10.1016/j.biortech.2007.01.057
De Vrieze, 2012, Methanosarcina: the rediscovered methanogen for heavy duty biomethanation, Bioresour. Technol., 112, 1, 10.1016/j.biortech.2012.02.079
Carlsson, 2012, The effects of substrate pre-treatment on anaerobic digestion systems: a review, Waste Manag., 32, 1634, 10.1016/j.wasman.2012.04.016
Kondusamy, 2014, Pre-treatment and anaerobic digestion of food waste for high rate methane production – a review, J. Environ. Chem. Eng., 2, 1821
Carrere, 2016, Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application, Bioresour. Technol., 199, 386, 10.1016/j.biortech.2015.09.007
Zhang, 2004, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems, Biotechnol. Bioeng., 88, 797, 10.1002/bit.20282
Mshandete, 2005, Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment, Water Res., 39, 1569, 10.1016/j.watres.2004.11.037
Nielsen, 2007, Bioaugmentation of a two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion concept for improvement of the methane yield from cattle manure, Biotechnol. Bioeng., 97, 1638, 10.1002/bit.21342
Weiss, 2010, Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite, Water Res., 44, 1970, 10.1016/j.watres.2009.11.048
Zhong, 2011, Effect of biological pretreatments in enhancing corn straw biogas production, Bioresour. Technol., 102, 11177, 10.1016/j.biortech.2011.09.077
Zhang, 2011, Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium, Bioresour. Technol., 102, 8899, 10.1016/j.biortech.2011.06.061
Čater, 2015, Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria, Bioresour. Technol., 186, 261, 10.1016/j.biortech.2015.03.029
Martin-Ryals, 2015, Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms, Bioresour. Technol., 189, 62, 10.1016/j.biortech.2015.03.069
Peng, 2014, Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum, Bioresour. Technol., 152, 567, 10.1016/j.biortech.2013.11.067
Rasit, 2015, Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview, Renew. Sustain. Energy Rev., 45, 351, 10.1016/j.rser.2015.01.066
Cavaleiro, 2009, Continuous high rate anaerobic treatment of oleic acid based wastewater is possible after a step feeding start-up, Environ. Sci. Technol., 43, 2931, 10.1021/es8031264
Cavaleiro, 2010, Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi, Water Res., 44, 4940, 10.1016/j.watres.2010.07.039
Cirne, 2006, Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste, J. Chem. Technol. Biotechnol., 81, 1745, 10.1002/jctb.1597
Pap, 2015, Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation, Bioresour. Technol., 177, 375, 10.1016/j.biortech.2014.11.021
Bagi, 2007, Biotechnological intensification of biogas production, Appl. Microbiol. Biotechnol., 76, 473, 10.1007/s00253-007-1009-6
Herbel, 2010, Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses, Environ. Technol., 31, 1017, 10.1080/09593330.2010.484075
Kovacs, 2013, Improvement of biogas production by bioaugmentation, Biomed. Res. Int., 2013, 482653, 10.1155/2013/482653
Ács, 2015, Bioaugmentation of biogas production by a hydrogen-producing bacterium, Bioresour. Technol., 186, 286, 10.1016/j.biortech.2015.02.098
Zhang, 2015, Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw, Bioresour. Technol., 179, 306, 10.1016/j.biortech.2014.12.022
Neumann, 2011, Impact of bioaugmentation by compost on the performance and ecology of an anaerobic digester fed with energy crops, Bioresour. Technol., 102, 2931, 10.1016/j.biortech.2010.11.068
Kovács, 2004, Improvement of biohydrogen production and intensification of biogas formation, Rev. Environ. Sci. BioTechnol., 3, 321, 10.1007/s11157-004-7460-2
Appels, 2008, Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combus Sci., 34, 755, 10.1016/j.pecs.2008.06.002
Nielsen, 2008, Strategies for optimizing recovery of the biogas process following ammonia inhibition, Bioresour. Technol., 99, 7995, 10.1016/j.biortech.2008.03.049
Fotidis, 2014, Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate, Environ. Sci. Technol., 48, 7669, 10.1021/es5017075
Akila, 2010, Stimulation of biomethanation by Clostridium sp. PXYL1 in coculture with a Methanosarcina strain PMET1 at psychrophilic temperatures, J. Appl. Microbiol., 108, 204, 10.1111/j.1365-2672.2009.04412.x
Schauer-Gimenez, 2010, Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure, Water Res., 44, 3555, 10.1016/j.watres.2010.03.037
Botheju, 2011, Oxygen effects in anaerobic digestion – a review, Open Waste Manag. J., 4, 1, 10.2174/1876400201104010001
Tale, 2015, Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community, Water Res., 70, 138, 10.1016/j.watres.2014.11.037
Costa, 2012, Effects of pre-treatment and bioaugmentation strategies on the anaerobic digestion of chicken feathers, Bioresour. Technol., 120, 114, 10.1016/j.biortech.2012.06.047
Nkemka, 2015, Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail, Bioresour. Technol., 185, 79, 10.1016/j.biortech.2015.02.100
Westerholm, 2012, Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia, Appl. Environ. Microbiol., 78, 7619, 10.1128/AEM.01637-12
Goud, 2014, Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load, Bioresour. Technol., 165, 223, 10.1016/j.biortech.2014.03.049
Ramadan, 1990, Inoculum size as a factor limiting success of inoculation for biodegradation, Appl. Environ. Microbiol., 56, 1392, 10.1128/AEM.56.5.1392-1396.1990
Lyon, 2013, Bioaugmentation for groundwater remediation: an overview, 1
Eberl, 1997, Use of green fluorescent protein as a marker for ecological studies of activated sludge communities, FEMS Microbiol. Lett., 149, 77, 10.1111/j.1574-6968.1997.tb10311.x
Herrero, 2015, Bioaugmentation and its application in wastewater treatment: a review, Chemosphere, 140, 119, 10.1016/j.chemosphere.2014.10.033
Lessner, 2010, An engineered methanogenic pathway derived from the domains Bacteria and Archaea, mBio, 1, 10.1128/mBio.00243-10
Sedlak, 2004, Production of ethanol from cellulosic biomass hydrolysates using genetically engineered saccharomyces yeast capable of cofermenting glucose and xylose, App. Biochem. Biotechnol., 114, 403, 10.1385/ABAB:114:1-3:403
Ganzoury, 2015, Impact of nanotechnology on biogas production: a mini-review, Renew. Sustain. Energy Rev., 50, 1392, 10.1016/j.rser.2015.05.073
Casals, 2014, Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production, Small, 10, 2801, 10.1002/smll.201303703
Yang, 2016, Surface-Nanoengineered bacteria for efficient local enrichment and biodegradation of aqueous organic wastes: using phenol as a model compound, Adv. Mater., 28, 2916, 10.1002/adma.201505493