Mineralogy, Mossbauer Characteristics, and K-Ar Isotopic Age of Glauconite from the Lower Cambrian Sediments, Western Lithuania

Lithology and Mineral Resources - Tập 40 - Trang 353-363 - 2005
T. S. Zaitseva1, I. M. Gorokhov1, T. A. Ivanovskaya2, B. B. Zvyagina2, N. N. Mel’nikov1, O. V. Yakovleva2
1Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia
2Geological Institute, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The paper presents results of lithological-mineralogical, Mossbauer, and isotope-geochronological study of globular phyllosilicates (glauconite and illite) from the Lower Cambrian Virbalis Formation in western Lithuania. K-Ar dates of these minerals (382 and 374 Ma) do not correspond to stratigraphic positions of the studied samples and indicate the loss of radiogenic 40Ar, probably, in Middle Devonian. Simulation of cation distribution in the mineral structure and comparison of the obtained data with Mossbauer spectral characteristics suggest that loss of 40Ar was caused by the structural rearrangement of globular phyllosilicates during the postdiagenetic substitution of Fe2+, Mg2+, and Fe3+ by Al3+, with the subsequent ordering of cation distribution in octahedral layers. These processes were presumably related to the same Caledonian tectonic events that were responsible for metasomatic dolomitization of Lower Paleozoic rocks in adjacent areas of the Baltic region at the terminal Silurian-Devonian. Diffraction analysis showed that globules consist of two micaceous phases with different Fe contents (illite and glauconite). Two alternative models are considered to explain the formation of two-phase globules: (1) disequilibrium conditions of diagenetic mineral formation; (2) transformation of glauconite into illite. Although the available data are insufficient to make an unambiguous choice between these models, the second mechanism seems to be more preferable.

Tài liệu tham khảo

Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., et al., Calibration Rates of Early Cambrian Evolution, Science, 1993, vol. 261, no.5126, pp. 1293–1298. Brangulis, A., Murnieks, A., Nagle, A., and Fridrikhsone, A., Vendian and Cambrian Facies Profile of the Middle Baltic Region, in Fatsii i stratigrafiya venda i kembriya zapada Vostochno-Evropeiskoi platformy (Vendian-Cambrian Facies and Stratigraphy of the Western East European Craton), Tallinn: Nauka, 1986, pp. 24–33. Chaudhuri, S., Srodon, J., and Clauer, N., K-Ar Dating of Illitic Fractions of Estonian “Blue Clay” Treated with Alkylammonium Cations, Clays Clay Minerals., 1999, vol. 47, no.1, pp. 96–102. Clauer, N., Keppens, E., and Stille, P., Sr Isotopic Constraints on the Process of Glauconitization, Geology, 1992a, vol. 20, no.2, pp. 133–136. Clauer, N., Stille, P., Keppens, E., and O’Neil, J.R., Le mecanisme de la glauconitisation: Apports de la geochimie isotopique du strontium, du neodyme et de l’oxygene de glauconies recentes, C. R. Acad. Sci. Paris, 1992b, vol. 315, ser. 2, no. 3, pp. 321–327. Clauer, N., Zwingmann, H., and Gorokhov, I.M., Postdepositional Evolution of Platform Claystones Based on a Simulation of Thermally Induced Diffusion of Radiogenic 40Ar from Diagenetic Illite, J. Sediment. Res, 2003, vol. 73, no.1, pp. 58–63. Dainyak, L.G., Bukin, A.S., and Drits, V.A., Interpretation of the Mossbauer Spectra of Dioctahedral Fe3+-Bearing Phyllosilicates. 2. Nontronite, Kristallografiya, 1984a, vol. 29, no.2, pp. 304–311. Dainyak, L.G., Bukin, A.S., and Drits, V.A., Interpretation of the Mossbauer Spectra of Dioctahedral Fe3+-Bearing Phyllosilicates. 3. Celadonite, Kristallografiya, 1984b, vol. 29, no.2, pp. 312–322. Dainyak, L.G., Drits, V.A., and Heifits, L.M., Computer Simulation of Cation Distribution in Dioctahedral 2: 1 Layer Silicates Using IR-Data: Application to Mossbauer Spectroscopy of a Glauconite Sample, Clays Clay Miner., 1992, vol. 40, no.4, pp. 470–479. Dainyak, L.G., Drits, V.A., and Lindgreen, H., Computer Simulation of Octahedral Cation Distribution and Interpretation of the Mossbauer Fe2+ Components in Dioctahedral Trans-Vacant Micas, Eur. J. Mineral., 2004, vol. 16, no.3, pp. 451–468. Drits, V.A., Kameneva, M.Yu., Sakharov, B.A., et al., Problemy opredeleniya real’noi struktury glaukonitov i rodstvennykh tonkodispersnykh fillosilikatov (Problems of Determination of the Real Structure of Glauconites and Related Fine-Dispersed Phyllosilicates), Novosibirsk: Nauka, 1993. Drits, V.A., Dainyak, L.G., Muller, F., et al., Isomorphous Cation Distribution in Celadonites, Glauconites and Fe-Illites Determined by Infrared, Mossbauer and EXAFS Spectroscopies, Clay Minerals, 1997, vol. 32, no.1, pp. 153–179. Drubetskoi, E.R. and Sprintsson, V.D., A New Set of Instrumental Equipment for Argon Isotopic Analysis, Metodicheskie problemy yadernoi geologii (Methodological Problems of Nuclear Geology), Leningrad: Nauka, 1982, pp. 121–129. Firsov, L.V., Nikolaeva, I.V., Lebedev, Yu.N., and Solntseva, S.M., Composition, Genesis, and Absolute Ages of Micaceous Minerals from Lower Cambrian “Blue Clays” of the Baltic Region, Glaukonit v sovremennykh, nizhnepaleozoiskikh i dokembriiskikh otlozheniyakh (Glauconite in Recent, Lower Paleozoic, and Precambrian Rocks), Moscow: Nauka, 1971, pp. 165–192. Geptner, A.R. and Ivanovskaya, T.A., Biochemogenic Genesis of the Glauconite-Nontronite Series Minerals in Present-Day Sediments of the Pacific Ocean, Litol. Polezn. Iskop., 1998, vol. 33, no.6, pp. 563–580 [Lithol. Miner. Resour. (Engl. Transl.), 1998, vol. 33, no. 6, pp. 503–517]. Gorokhov, I.M., Clauer, N., Turchenko, T.L., et al., Rb-Sr Systematics of Vendian-Cambrian Claystones from the East European Platform: Implications for a Multi-Stage Illite Evolution, Chem. Geol., 1994, vol. 112, nos.1/2, pp. 71–89. Gorokhov, I.M., Yakovleva, O.V., Semikhatov, M.A., and Ivanovskaya, T.A., Rb-Sr and K-Ar Ages and Mossbauer Spectra of Globular Phyllosilicates of the Glauconite Series: The Middle Riphean Debegda Formation of the Olenek Uplift, Northern Siberia, Litol. Polezn. Iskop., 1995, no. 6, pp. 615–631 [Lithol. Mineral. Resour. (Engl. Transl.), 1995, no. 6, pp. 556–570]. Gorokhov, I.M., Yakovleva, O.V., Semikhatov, M.A., Mel’nikov, N.N., Ivanovskaya, T.A., and Kutyavin, E.P., “Rejuvenated” Al-glauconite in Vendian-Cambrian Deposits of the Podolian Dniester Region, Ukraine: Rb-Sr and K-Ar Systematics and 57Fe Mossbauer Spectra, Litol. Polezn. Iskop., 1997, vol. 32, no.6, pp. 616–635 [Lithol. Miner. Resour. (Engl. Transl.), 1997, vol. 32, no. 6, pp. 541–558]. Ivanovskaya, T.A. and Geptner, A.R., Glauconite on Different Stadies Lithogenesis in Lower Cambrian Deposits of Western Lithuania, Litol. Polezn. Iskop., 2004, vol. 39, no.3, pp. 227–240 [Lithol. Miner. Resour. (Engl. Transl.), 2004, vol. 39, no. 3, pp. 191–203]. Ivanovskaya, T.A., Sakharov, B.A., Gor’kova, N.V., Karpova, N.V., Pokrovskaya, E.V., and Drits, V.A., Berthierine in Catagenetically Altered Vendian-Cambrian Deposits of Podolia, Dniester Region, Litol. Polezn. Iskop., 1999, vol. 34, no.2, pp. 198–212 [Lithol. Miner. Resour. (Engl. Transl.), 1999, vol. 34, no. 2, pp. 170–183]. Ivanovskaya, T.A., Zaitseva, T.S., Gorokhov, I.M., and Konstantinova, G.V., Mineralogical, Mossbauer, and Isotopic-Geochronological Study of Upper Riphean Al-glauconites, Kil’din Group, Srednii Peninsula, Litol. Polezn. Iskop., 2003, vol. 38, no.5, pp. 526–538 [Lithol. Miner. Resour. (Engl. Transl.), 2003, vol. 38, no. 5, pp. 447–457]. Jankauskas, T., Cambrian Stratigraphy of Lithuania, Vilnius, 2002. Kirsimae, K., Jorgensen, P., and Kalm, V., Low-Temperature Diagenetic Illite-Smectite in Lower Cambrian Clays in North Estonia, Clay Minerals, 1999, vol. 34, no.1, pp. 151–163. Odin, G.S. and Dodson, M.H., Zero Isotopic Age of Glauconites, Numerical Dating in Stratigraphy, Odin, G.S., Ed., Chichester: Wiley & Sons, 1982, pp. 277–305. Pichugin, M.S., Puura, V.A., Vingisaar, P.A., and Erislalu, E.K., Regional Manifestations of Metasomatic Dolomitization in Connection with Faults in Lower Paleozoic Rocks of the Northern Baltic Region, Sov. Geol., 1976, no. 10, pp. 78–90. Pirrus, E.A., Lithogenesis of Vendian and Cambrian in the Northern Baltic Region, DSc (Geol.-Miner.) Dissertation, Leningrad: Vses. Geol. Inst., 1989. Popov, V.I., Khramov, D.A., and Lobanov, F.I., Form of the Absorber: Influence on Mossbauer Spectrum Parameters, Trudy Vsesoyuznoi konferentsii po messbauerovskoi spektroskopii “Volga” (Proc. All-Union Conference “Volga” on Mossbauer Spectroscopy), Moscow: Mosk. Fiz.-Techn. Inst., 1988, pp. 32–33. Semikhatov, M.A., Gorokhov, I.M., Ivanovskaya, T.A., et al., Rb-Sr and K-Ar Age of Riphean-Cambrian Globular Phyllosilicates of the USSR: Materials for Geochronometer Evaluation, Litol. Polezn. Iskop., 1987, vol. 22, no.5, pp. 78–96. Semikhatov, M.A., Gorokhov, I.M., Kutyavin, E.P., et al., Analysis of Possibilities of Sedimentary Chronometers: Evidence from the Riphean Totta Group in East Siberia, Litol. Polezn. Iskop., 1989, vol. 24, no.6, pp. 3–18. Smolyar, B.B. and Drits, V.A., Dependence of Parameter b of the Unit Cell of Dioctahedral Micas on Chemical Composition, Miner. Zh., 1988, vol. 10, no.6, pp. 10–16. Sokolov, Yu.A. and Novikov, G.V., Razlozhenie na komponenty messbauerovskikh spektrov i rentgenovskikh difraktogramm (Breakdown of Mossbauer Spectra and X-Ray Diffractograms), Chernogolovka: Inst. Khim. Fiz. Akad. Nauk SSSR, IEM Akad. Nauk SSSR, 1983, preprint no. T 06577. Tsipurskii, S.I., Ivanovskaya, T.A., Sakharov, B.A., et al., Nature of the Coexistence of Glauconite, Fe-Illite, and Illite in Globular Micaceous Sediments of Various Lithological Types and Ages, Litol. Polezn. Iskop., 1992, vol. 27, no.5, pp. 65–75. Yakovleva, O.V. and Gorokhov, I.M., 57Fe Mossbauer Control of Ancient Glauconite Feasibility to Numerical Stratigraphy, EUG-8, Strasbourg, France, April 9–13, 1995 (Terra Abstracts: Abstracts Supplement no. 1 to Terra Nova), 1995a, vol. 7, p. 327. Yakovleva, O.V. and Gorokhov, I.M., 57Fe Mossbauer Study of the Cation Distribution in Ancient Glauconites: A Relationship with Retention of the K-Ar and Rb-Sr Systems, Euroclay-95, Clays and Clay Materials Sciences, Leuven, Belgium, August 20–24, 1995 (Book of Abstracts and Posters), 1995b, pp. 90–91. Yakovleva, O.V. and Gorokhov, I.M., Glauconite Feasibility to Numerical Stratigraphic Studies: 57Fe Mossbauer Evidence, 6th V.M. Goldschmidt Conference, March 31–April 4, 1996 (Abstracts of Papers), Heidelberg, 1996a, vol. 1, p. 689. Yakovleva, O.V. and Gorokhov, I.M., Relationship of the Cation Distribution in Precambrian Glauconites with Retention of the Rb-Sr and K-Ar Systems: 57Fe Mossbauer Evidence, 30th Int. Geol. Congress, 4–14 August, 1996 (Abstracts of Papers), Bejing, 1996b, vol. 1, p. 486. Zaitseva, T.S., Gorokhov, I.M., Ivanovskaya, T.A., and Yakovleva, O.V., The Mossbauer Characteristics of Precambrian Glauconites and Stratigraphic Implications of Their Isotopic Ages, Vserossiiskaya nauchnaya konferentsiya “Geologiya, geokhimiya, geofizika na rubezhe XX i XXI vekov” (All-Russian Sci. Conference on Geology, Geochemistry, and Geophysics at the Turn of Centuries), vol. 1: Tectonics, Stratigraphy, and Lithology (Abstracts of Papers), Moscow: OOO “Svyaz-print”, 2002, pp. 144–145. Zaitseva, T.S., Gorokhov, I.M., Mel’nikov, N.N., and Yakovleva, O.V., Cation Arrangement of Tri-and Bivalent Iron in the Octahedral Layer of Glauconite: Model Ideas and Mossbauer Spectroscopy Data, Geologiya i geoekologiya Evropeiskoi Rossii i sopredel’nykh territorii (Geology and Geoecology of European Russia and Adjacent Areas) (Abstracts of Papers), St. Petersburg: Inst. Geol. Geokhim. Dokembriya Ross. Akad. Nauk, 2004, pp. 81–82.