Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength
Tài liệu tham khảo
Ramachandran, 2003
Payá, 2003, Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes, J Cem Concr Res, 33, 1085, 10.1016/S0008-8846(03)00014-0
Pane, 2005, Investigation of blended cement hydration by isothermal calorimetry and thermal analysis, J Cem Concr Res, 35, 1155, 10.1016/j.cemconres.2004.10.027
Riesen, 1998, Adjustment of heating rate for maximum resolution in TG and TMA (MaxRes), J Therm Anal Calorim, 53, 365, 10.1023/A:1010109603273
Gill, 1992, High resolution thermogravimetry, J Therm Anal Calorim, 38, 255, 10.1007/BF01915490
Borrachero, 2008, The use of thermogravimetric analysis technique for the characterization of construction materials: The gypsum case, J Therm Anal Calorim, 91, 503, 10.1007/s10973-006-7739-3
Masson, 2005, Solventless fingerprinting of bituminous materials: a high-resolution. Thermogravimetric method, Thermochim Acta, 436, 35, 10.1016/j.tca.2005.06.025
Tobón, 2012, Determination of the optimum parameters in the high-resolution thermogravimetric analysis (HRTG) for cementitious materials, J Therm Anal Calorim, 107, 233, 10.1007/s10973-010-0997-0
Taylor, 1997
Tobón, 2010, Comparative analysis of performance of Portland cement blended with nanosiliaca and silica fume, Dyna., 77, 37
Qing, 2007, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, J Construct Build Mater, 21, 539, 10.1016/j.conbuildmat.2005.09.001
Ji, 2005, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, J Cem Concr Res, 35, 1943, 10.1016/j.cemconres.2005.07.004
Gaitero, 2008, Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles, Cem Concr Res, 38, 1112, 10.1016/j.cemconres.2008.03.021
Jo, 2007, Characteristics of cement mortar with nano-SiO2 particles, Construct Build Mater, 21, 1351, 10.1016/j.conbuildmat.2005.12.020
Sanchez, 2010, Nanotechnology in concrete – a review, J Construct Build Mater, 24, 2060, 10.1016/j.conbuildmat.2010.03.014
UNE-EN 196–1. Métodos de ensayo de cementos. Parte I: Determinación de resistencias mecánicas; 1996.
Björnström, 2004, Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chem Phys Lett, 392, 242, 10.1016/j.cplett.2004.05.071
Gaitero, 2010, Small changes can make a great difference. Transportation research record, J Trans Res Board, Nanotechnol Cem Concr, 2142, 1, 10.3141/2141-01
Ramachandran, 2003
Dolado, 2007, A molecular dynamics study of cementitious calcium silicate hydrate (C–S–H) gels, J Am Ceram Soc, 90, 3938
Richardson, 2008, The calcium silicate hydrates, J Cem Concr Res, 38, 137, 10.1016/j.cemconres.2007.11.005
Nonat, 2004, The structure and stoichiometry of C–S–H, J Cem Concr Res, 34, 1521, 10.1016/j.cemconres.2004.04.035
Richardson, 1992, Models for the composition and structure of calcium silicate hydrate (C–S–H) gel in hardened tricalcium silicate pastes, J Cem Concr Res, 22, 1001, 10.1016/0008-8846(92)90030-Y
Pellenq, 2009, Realistic molecular model of cement hydrates, Proc Natl Academy Sci United States of America, 106, 16102, 10.1073/pnas.0902180106
Shih, 2006, Effect of nanosilica on characterization of Portland cement composite, J Mater Sci Eng A, 424, 266, 10.1016/j.msea.2006.03.010
Srinivasan, 2010, Characterising cement–superplasticiser interaction using zeta potential measurements, J Constr Build Mater, 24, 2517, 10.1016/j.conbuildmat.2010.06.005