Mineralogical and geochemical indicators of anoxic sedimentation conditions in local depressions within the Sea of Okhotsk in the late Pleistocene-Holocene
Tóm tắt
This paper reports specific mineralogical and geochemical characteristics of deposits from the local depressions of the Derugin Basin. They were formed in an environment with periodic changes from oxic to anoxic conditions and show evidence for the presence of hydrogen sulfide in bottom waters. The deposits of this type can be considered as a modern model for ancient ore-bearing black shale associations. Compared with typical metalliferous black shale sequences, which are characterized by high contents of organic matter, the sediments described here are depleted in the elements of the organophilic association (Mo, Ni, Cu, Zn, V, and U) but have higher Mn contents.
Tài liệu tham khảo
T. A. Aizatullin and B. A. Skopintsev, “Water Chemistry in Basins with Anaerobic Zones,” in Chemistry of Ocean (Nauka, Moscow, 1968), Vol. 1, pp. 288–323 [in Russian].
V. V. Argentov, V. V. Zhigulev, et al., “Tectonic Aspects of the Deryugin Depression Based on the Integrated Interpretation of Geophysical Data,” in Proceedings of International Scientific Symposium on Structure, Geodymanics, and Metallogeny in the Okhotsk Region and Adjacent Parts of the Northwestern Pacific Plate, Yuzhno-Sakhalinsk, Russia, 2002 (Yuzhno-Sakhalinsk, 2002), Vol. 1, pp. 16–18 [in Russian].
A. S. Astakhov, S. A. Gorbarenko, et al., “Manganese Distribution and Rates of Accumulation in Bottom Sediments of the Sea of Okhotsk,” Tikhookean. Geol. 19(5), 47–60 (2000).
A. S. Astakhov, Yu. L. Kretser, et al., “Carbonate and Sulfide Ore Mineralization in Sediments of the Deryugin Riftogenic Zone, Sea of Okhotsk,” Dokl. Akad. Nauk 395(4), 511–516 (2004) [Dokl. Earth Sci. 395A (3), 373–377 (2004)].
A. S. Astakhov, S. A. Gorbarenko, G. A. Bakhareva, et al., “Distribution and Accumulation Rate of Ore Elements in Holocene and Late Glacial Sediments of the Deryugin Basin, Sea of Okhotsk,” Litol. Polezn. Iskop. 40(2), 115–132 (2005) [Lithol. Miner. Resour. 40 (2), 97–113 (2005)].
N. V. Astakhova, “Geochemistry of Sediments in the Deryugin Depression (The Sea of Okhotsk),” Tikhookean. Geol. 19(2), 87–93 (2000).
P. L. Bezrukov, “Bottom Sediments of the Sea of Okhotsk,” Tr. Inst. Okeanol. im. P. P. Shirshova, Akad. Nauk SSSR 32, 15–97 (1960).
A. I. Blazhchishin, Paleogeography and Evolution of the Late Quaternary Sedimentation in the Baltic Sea (Yantarnyi Skaz, Kaliningrad, 1998) (in Russian).
I. I. Burmistrova and N. V. Belyaeva, “On the Paleohydrogeology of the Deryugin Basin during the Last Glacial and the Holocene,” in Proceedings of the 20th Workshop of Marine Geology on Geology of Seas and Oceans, Moscow, Russia (Moscow, 2005), Vol. 2 [in Russian].
G. Yu. Butuzova, “On the Mineralogy and Geochemistry of Iron Sulfides in the Sediments of the Black Sea,” Litol. Polezn. Iskop. 4(4), 3–16 (1969).
G. Yu. Butuzova, Hydrothermal-Sedimentary Metallization in the Rift Zone of the Red Sea (GEOS, Moscow, 1998) [in Russian].
I. I. Volkov, “Tendencies in the Formation and Transformation of Sulfur Compounds in the Sediments of the Black Sea,” in Modern Sediments of Seas and Oceans (Izd. Akad. Nauk SSSR, Moscow, 1961), pp. 577–596 [in Russian].
I. I. Volkov and L. S. Fomina, “Trace Elements in Sapropelic Soils of the Black Sea and Their Correlation with Organic Matter,” Litol. Polezn. Iskop. 6(6), 3–15 (1971).
I. I. Volkov and L. S. Fomina, “Role of Iron Sulfide in Accumulation of Microelements in Sediments of the Black Sea,” Litol. Polezn. Iskop. 7(2), 18–24 (1972).
I. I. Volkov, “Spatial Distribution of Elements in Deep-Sea Sediments of the Black Sea,” Litol. Polezn. Iskop. 7(2), 3–23 (1973).
V. A. Voronova, “Lithology and Geochemistry of Deposits in the Deryugin Depression (The Sea of Okhotsk),” in Geodynamics of the Tectonosphere of the Pacific Ocean and Eurasia Junction Zone: Vol. IV. Structure and Composition of Sedimentary Cover of Northwestern Pacific Ocean (Inst. Morsk. Geol. Geofiz. Dal’nevost. Otd. Ross. Akad. Nauk, Yuzhno-Sakhalinsk, 1997), pp. 119–142 [in Russian].
Yu. O. Gavrilov, L. A. Kodina, L. Yu. Lubchenko, and N. G. Muzylev, “The Late Paleocene Anoxic Event in Epicontinental Seas of Peri-Tethys and Formation of the Sapropelite Unit: Sedimentology and Geochemistry,” Litol. Polezn. Iskop. 32(5), 492–517 (1997) [Lithol. Miner. Resour. 32 (5), 427–450 (1997)].
Yu. O. Gavrilov, E. V. Shchepetova, et al., “The Early Cretaceous Anoxic Basin of the Russian Plate: Sedimentology and Geochemistry,” Litol. Polezn. Iskop. 37(4), 359–380 (2002) [Lithol. Miner. Resour. 37 (4), 310–329 (2002)].
V. M. Gavshin, V. A. Bobrov, et al., “Geochemistry of the Marine Terrigenous Deposits of the West Siberian Platform,” in Geochemistry of Platformal and Geosynclinal Sedimentary Rocks and Ores (Nauka, Moscow, 1983), pp. 48–56 [in Russian].
V. M. Gavshin and F. G. Gurari, “Ore Elements and Their Relationship with Organic Carbon in Phanerozoic Planktonic Deposits,” in Ore Specialization of Sedimentary Formations in Siberia and the Far East (Dal’nevost. Nauchn. Ts. Akad. Nauk SSSR, Vladivostok, 1985), pp. 95–101 [in Russian].
V. M. Gavshin, A. S. Lapukhov, S. V. Saraev, et al., Geochemistry of Lithogenesis in the Environment of Hydrosulfuric Contamination (The Black Sea) (Nauka, Novosibirsk, 1988) [in Russian].
Geology of the Baltic Sea, Ed. by V. K. Gudelis and E. M. Emel’yanov (Nedra, Leningrad, 1976) [in Russian].
Hydrothermal Sulfide Ores and Metalliferous Sediments in Oceans (Nedra, St. Petersburg, 1992) [in Russian].
G. D. Ginsburg and V. A. Solov’ev, Submarine Gas Hydrates (Vseross. Nauchn.-Issled. Inst. Okeangeologiya, St. Petersburg, 1994) [in Russian].
G. S. Gnibidenko, “On the Rift System of the Sea of Okhotsk Seafloor,” Dokl. Akad. Nauk SSSR 229(1), 163–165 (1976).
V. V. Golota, “Criteria for the Exploratory Predicting the Manganese Mineralization,” Rudy Met., No. 4, 33–36 (2000).
S. A. Gorbarenko, A. N. Derkachev, and A. S. Astakhov, “Lithostratigraphy and Tephrochronology of the Upper Quaternary Sediments in the Sea of Okhotsk,” Tikhookean. Geol. 19(2), 58–72 (2000).
V. M. Grannik and K. F. Sergeev, “Okhotsk Sector of the Cenozoic Active Margin of the Pacific,” Dokl. Akad. Nauk 376(3), 369–372 (2001) [Dokl. Earth Sci. 376 (3), 23–25 (2001)].
E. V. Gretskaya, Initial Oil and Gas Generation Potential of Organic Matter Dispersed in Sediments (with Reference to the Sea of Okhotsk) (Dal’nevost. Otd. Akad. Nauk SSSR, Vladivostok, 1990) [in Russian].
E. G. Gurvich, Metalliferous Sediments of the World Ocean (Nauch. Mir, Moscow, 1998) [in Russian].
J. C. Davis, Statistics and Data Analysis in Geology (Wiley, New York, 1973; Mir, Moscow, 1977) [in Russian].
A. N. Derkachev, G. Bohrmann, J. Greinert, and A. V. Mozherovskii “Autigenic Carbonate and Barite Mineralization in Sediments of the Deryugin Basin (Sea of Okhotsk),” Litol. Polezn. Iskop. 35(6), 568–585 (2000) [Lithol. Miner. Resour. 35 (6), 504–519 (2000)].
A. N. Derkachev, A. I. Obzhirov, G. Bohrmann, et al., “Authigenic Mineralization in Cold Gas-Fluid Emanation zones on the Sea of Okhotsk Seafloor,” in Depositional Environments of Bottom Sediments and the Associated Mineral Resources in Marginal Seas (Dal’nauka, Vladivostok, 2002), pp. 47–60 [in Russian].
A. N. Derkachev, N. A. Nikolaeva, et al., “Evidence for the Periodic Existence of Hydrosulfuric Contamination Zone in the Deryugin Basin (Sea of Okhotsk),” in Proceedings of the 15th International Workshop on Marine Geology, Moscow, Russia, 2003 (Moscow, 2003), Vol. II, pp. 78–79 [in Russian].
E. M. Emel’yanov, “Aluminosilicate Carbonate Manganese Lithology and Geochemical Region of the Gotland and Landsort Deeps,” in Sedimentation in the Baltic Sea (Nauka, Moscow, 1981), pp. 136–180 [in Russian].
E. M. Emel’yanov, I. I. Volkov, A. G. Rozanov, and N. I. Zhabina, “Processes of Reduction-Related Diagenesis in Depression Sediments,” in Geochemistry of Sedimentary Processes in the Baltic Sea (Nauka, Moscow, 1986), pp. 131–154 [in Russian].
E. M. Emel’yanov, Barrier Zones in Oceans (Yantarnyi Skaz, Kaliningrad, 1998).
M. E. Kaplan, “Calcite Pseudomorphs (Pseudogaylussite, Yarrowite, Thinolite, Glendonite, Gennoishi, White Sea Hornlets) in Sedimentary Rocks. Pseudomorph Genesis,” Litol. Polezn. Iskop. 14(5), 125–141 (1979).
V. N. Kuleshov, “Manganese Carbonates in Recent Sediments: Geochemistry of Isotopes (δ13C and δ18O,) and Origin,” Litol. Polezn. Iskop. 34(5), 483–502 (1999) [Lithol. Miner. Resour. 34 (5), 449–457 (1999)].
A. Yu. Lein, M. B. Vanshtein, E. V. Kashparova, et al., “Biogeochemistry of Anaerobic Diagenesis and Sulfur and Carbon Isotopic Balance in Sedimentary of the Baltic Sea,” in Geochemistry of Sedimentary Processes in the Baltic Sea (Nauka, Moscow, 1986), pp. 155–176 [in Russian].
A. Yu. Lein, “Authigenic Carbonate Formation in the Ocean,” Litol. Polezn. Iskop. 39(1), 3–35 (2004) [Lithol. Miner. Resour. 39 (1), 1–30 (2004)].
A. P. Lisitsyn, Yu. A. Bogdanov, I. O. Murdmaa, et al., “Metalliferrous Sediments and Their Origin,” in Geologic-Geophysical Research in the Southeastern Pacific (Nauka, Moscow, 1976), pp. 289–379 [in Russian].
A. P. Lisitsyn, Yu. A. Bogdanov, and E. G. Gurvich, Hydrothermal Mineral Assemblage of the Oceanic Rift Zones (Nauka, Moscow, 1990) [in Russian].
A. Yu. Mitropol’skii, A. A. Bezborodov, and E. I. Ovsyanyi, Geochemistry of the Black Sea (Naukova Dumka, Kiev, 1982) [in Russian].
V. I. Mikheev, X-ray Data on Minerals (Gosgeoltekhizdat, Moscow, 1957), pp. 484–485 [in Russian].
Methane Monitoring in the Sea of Okhotsk (Dal’nauka, Vladivostok, 2002) [in Russian].
E. A. Ostroumov, “Manganese in the Bottom Sediments of the Sea of Okhotsk,” Dokl. Akad. Nauk SSSR 97(2), 285–288 (1954).
E. A. Ostroumov, I. I. Volkov, and L. S. Fomina, “The Distribution of Sulfur Compounds in the Bottom Sediments of the Black Sea,” in Modern Sediments in Seas and Oceans (Akad. Nauk SSSR, Moscow, 1961), pp. 596–633 [in Russian].
Kh. M. Saidova, Benthic Foraminiferas of the World Ocean (Nauka, Moscow, 1976) [in Russian].
Kh. M. Saidova, “Modern Biocoenosis of Benthic Foraminiferas, Holocene Stratigraphy and Paleogeography of the Baltic Sea on Foraminiferas,” in Sedimentation in the Baltic Sea (Nauka, Moscow, 1981), pp. 215–232 [in Russian].
A. S. Svarichevskii, “Seafloor Topography of the Sea of Okhotsk,” in Problems of Morphotectonics of the West Pacific Transition Zone (Dal’nauka, Vladivostok, 2001), pp. 82–97 [in Russian].
Glossary of Geochemistry (Nedra, Moscow, 1990) [in Russian].
A. S. Stolyarov, “Problems of Large-Scale Manganese Accumulations in Hydrosulfuric Basins and Prospects for Their Discovery in Russia,” Rudy Met., No. 1, 32–38 (1996).
N. M. Strakhov, L. E. Shterenberg, et al., Geochemistry of Sedimentary Manganese Mineralization (Nauka, Moscow, 1968) [in Russian].
N. M. Strakhov, Geochemistry of Modern Oceanic Lithogenesis (Nauka, Moscow, 1976) [in Russian].
G. A. Tret’yakov and V. M. Gavshin, “Geochemistry of Planktonic Sediments as a Reflection of the Trace Element Composition of Seawater,” in Trace Element Associations with Organic Carbon in the Sedimentary Sequences of Siberia (Novosibirsk, 1984), pp. 16–21 [in Russian].
V. V. Kharakhinov, V. A. Baboshina, and A. A. Tereshchenkov, “Structure of the Earth’s Crust,” in Structure and Dynamics of Lithosphere and Asthenosphere of the Sea of Okhotsk Region (Ross. Akad. Nauk, Nats. Geofiz. Komitet, Moscow, 1996), pp. 91–111 [in Russian].
V. N. Kholodov, “The Role of H2S-Contaminated Basins in Sedimentary Ore Formation,” Litol. Polezn. Iskop. 37(5), 451–473 (2002) [Lithol. Miner. Resour. 37 (5), 393–411 (2002)].
V. N. Kholodov and R. I. Nedumov, “Application of the Molybdenum Module for Reconstruction of the Gas Composition of Water in the Cretaceous Atlantic,” Dokl. Akad. Nauk 400(2), 250–253 (2005) [Dokl. Earth Sci. 400 (1), 116–118 (2005)].
G. Aloisi, K. Wallmann, et al., “The Effect of Dissolved Barium on Biogeochemical Processes at Cold Seeps,” Geochim. Cosmochim. Acta 68(8), 1735–1748 (2004).
L. G. Benning, R. T. Wilkin, and H. L. Barnes, “Reaction Pathways in the Fe-S System below 100°C,” Chem. Geol. 167, 25–51 (2000).
S. Bollwerk, Rezent Submarine Barytbildung in Derugin Becken (Ochotskisches Meer): Geochemische Prozesse an Activen Fluidaustrittsstellen (GEOMAR, Kiel, 2002).
M. E. Buttcher and H. Huckriede, “First Occurrence and Stable Isotope Composition of Authigenic g-MnS in the Central Gotland Deep (Baltic Sea),” Mar. Geol. 137, 201–205 (1997).
S. E. Calvert and T. F. Pederson, “Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications of the Geological Record,” Mar. Geol. 113(1), 67–86 (1993).
S. E. Calvert and T. F. Pedersen, “Sedimentary Geochemistry of Manganese: Implications for the Environment of Formation of Manganiferous Black Shales,” Econ. Geol. 91, 36–47 (1996).
N. Chow, S. Morad, and I. Al-Aasm, “Origin of Authigenic Mn-Fe Carbonates and Pore-Water Evolution in Marine Sediments: Evidence from Cenozoic Strata of the Arctic Ocean (ODP LEG 151),” J. Sediment. Res. 70(3), 682–699 (2000).
Cruise Report: KOMEX I and II. R/V Professor Gagarinsky, Cruise 22, RV Akademik M.A. Lavrentyev, Cruise 28 (GEOMAR Report 82, Kiel, 1999).
Cruise Report: KOMEX V and VI. R/V Professor Gagarinsky, Cruise 26, MV Marshal Gelovany, Cruise 1 (GEOMAR Report 88, Kiel, 2000).
Cruise Report: KOMEX II. R/V Akademik M.A. Lavrentyev, Cruise 29, Leg 1 and Leg 2 (GEOMAR Report 110, Kiel. 2003).
Cruise Report: KOMEX. R/V Sonne, Cruise 178 (GEOMAR Report, Kiel, 2004).
A. N. Derkachev, B. V. Baranov, et al., “Formation Conditions of a Large Barite Field in the Derugin Basin Based on Complex Geological Data,” in Fifth KOMEX Workshop. Program and Abstracts Vladivostok, Russia, 2004 (Vladivostok, 2004), pp. 19–20.
E. R. Force and W. F. Cannon, “Depositional Model for Shallow-Marine Manganese Deposits around Black Shale Basins,” Econ. Geol. 83(1), 93–117 (1988).
V. M. Gavshin and V. A. Zakharov, “Geochemistry of the Upper Jurassic-Lower Cretaceous Bazhenov Formation, West Siberia,” Econ. Geol. 91, 122–133 (1996).
G. S. Gnibidenko, “The Rift System of Sea of Okhotsk,” in Proceedings of 1st International Conference on Asian Marine Geology, Beijing, China, 1990 (China Ocean Press, Beijing, 1990), pp. 73–81.
S. A. Gorbarenko, D. Nurnberg, et al., “Magnetostratigraphy and Tephrochronology of the Upper Quaternary Sediments in Sea of Okhotsk: Implication of Terrigenous, Volcanogenic and Biogenic Matter Supply,” Mar. Geol. 183(1–4), 107–129 (2002).
J. Greinert, S. Bollwerk, A. N. Derkachev, et al., “Massive Barite Deposits and Carbonate Mineralization in the Derugin Basin, Sea of Okhotsk: Precipitation Processes at Cold Seep Sites,” Earth Planet. Sci. Lett. 203(1), 165–180 (2002).
J. Greinert and A. Derkachev, “Glendonites and Methane-Derived Mg-Calcites in the Sea of Okhotsk, Eastern Siberia: Implications of a Venting-Related Ikaite/Glendonite Formation,” Mar. Geol. 204, 129–144 (2004).
U. Heiser, T. Neumann, et al., “Recycling of Manganese from Anoxic Sediments in Stagnant Basins by Seawater Inflow: A Study of Surface Sediments from the Gotland Basin, Baltic Sea,” Mar. Geol. 177, 151–166 (2001).
H. Huckriede and D. Meischner, “Origin and Environment of Manganese-Rich Sediments within Black-Shale Basins,” Geochim. Cosmochim. Acta 60(8), 1399–1413 (1996).
R. Jakobsen and D. Postma, “Formation and Solution Behavior of Ca-Rhodochrosites in Marine Muds of the Baltic Deeps,” Geochim. Cosmochim. Acta 53, 2639–2648 (1989).
P. Krieger, “Notes on an X-Ray Diffraction Study of the Series Calcite-Rhodochrosite”;, Am. Mineral. 15, 23–29 (1930).
A. Lepland and R. L. Stevens, “Manganese Authigenesis in the Landsort Deep, Baltic Sea,” Mar. Geol. 151, 1–25 (1998).
L. N. Neretin, Ch. Pohl, et al., “Manganese Cycling in the Gotland Deep, Baltic Sea,” Mar. Chem. 82, 125–143 (2003).
L. N. Neretin, M. E. Buttcher, et al., “Pyritization Processes and Greigite Formation in the Advancing Sulfidization Front in the Upper Pleistocene Sediments of the Black Sea,” Geochim. Cosmochim. Acta 68(9), 2081–2093 (2004).
T. Neumann, C. Christiansen, S. Clasen, et al., “Geochemical Records of Salt Water Inflows into the Deep Basins of the Baltic Sea,” Cont. Shelf Res. 17(1), 95–115 (1997).
T. Neumann, U. Heiser, et al., “Early Diagenetic Processes during Mn-Carbonate Formation: Evidence from the Isotopic Composition of Authigenic Ca-Rhodochrosites of the Baltic Sea,” Geochim. Cosmochim. Acta 66(5), 867–879 (2002).
N. Nikolaeva, A. Derkachev, et al., “Evidence for a Periodic Existence of a Hydrosulphuric Contamination Zone in the Derugin Basin (Sea of Okhotsk) during the Holocene-Late Pleistocene,” in Fifth KOMEX Workshop. Program and Abstracts. Vladivostok, Russia, 2004, (Vladivostok, 2004), pp. 35–36.
Y. Okazaki, K. Takahashi, et al., “Late Quaternary Paleoceanographic Changes in the Southwestern Okhotsk Sea: Evidence from Geochemical, Radiolarian and Diatom Records,” Deep Sea Res. Pt. 2 52(16–18), 2332–2350 (2005).
T. F. Pedersen and S. E. Calvert, “Anoxia VS Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks,” Am. Assoc. Petrol. Geol. 74, 454–466 (1990).
F. A. Richards, “Anoxic Basins and Fjords,” in Chemical Oceanography (Acad. Press, London, 1965), Vol. 1, pp. 611–645.
T. Sakamoto, M. Ikehara, et al., “Ice-Rafted Debris (ZRD) — Based Sea-Ice Expansion Events during the Past 100 Kyrs in the Sea of Okhotsk,” Deep Sea Res. Pt. II 52(16–18), 2275–2301 (2005).
V. P. Salonen, T. Grunlund, et al., “Geochemical Record on Early Diagenesis of Recent Baltic Sea,” Mar. Geol. 129, 101–109 (1995).
O. Seki, K. Kawamura, et al., “Sediment Core Profiles of Longchain N-Alkanes in the Sea of Okhotsk: Enhanced Transport of Terrestrial Organic Matter from the Last Deglaciation to the Early Holocene,” Geophys. Res. Lett. 30(1), 1939 (2003).
Selected Powder Diffraction Data for Minerals (Search Mannual) (Joint Committee on Powder Diffraction Standards, Pennsylvania, USA, 1974).
B. J. Skinner, R. C. Erd, and F. S. Grimaldi, “Greigite, the Thiospinel of Iron: A New Mineral,” Am. Mineral. 49, 543–555 (1964).
G. Sohlenius, J. Sternbeck, et al., “Holocene History of the Baltic Sea as Recorded in a Sediment Core from the Gotland Deep,” Mar. Geol. 134, 183–201 (1996).
J. Sternbeck and G. Sohlenius, “Authigenic Sulfide and Carbonate Mineral Formation in Holocene Sediments of the Baltic Sea,” Chem. Geol. 135, 55–73 (1997).
E. Suess, “Mineral Phases Formed in Anoxic Sediments by Microbial Decomposition of Organic Matter,” Geochim. Cosmochim. Acta 43, 339–352 (1979).
E. Suess, W. Balzer, K. F. Hesse, et al., “Calcium Carbonate Hexahydrate from Organic-Rich Sediments of the Antarctic Shelf: Precursor of Glendonites,” Science 1216, 1128–1131 (1982).
A. Van Green, Y. Zheng, et al., “On the Preservation of Laminated Sediments along the Western Margin of North America,” Paleoceanography 18(4), 1098 (2003).
J. E. Van Hinte, M. B. Cita, and C. H. Von der Weijden, “Extant and Ancient Anoxic Basin Conditions in the Eastern Meditterranean,” Mar. Geol. 75, (1987).
U. G. Wortmann, R. Hesse, and W. Zacher, “Major Element Analysis of Cyclic Black Shales: Paleoceanographic Implications for the Early Cretaceous Deep Western Tethys,” Paleoceanography 14(4), 525–541 (1999).
Ya. E. Yudovich and M. P. Ketris, Geochemistry of Black Shales (Prolog, Syktyvkar, 1997).