Đặc điểm khoáng vật học và hóa học của đá thải từ một mỏ vàng ở đông bắc Thái Lan: ứng dụng cho bảo vệ tác động môi trường

Springer Science and Business Media LLC - Tập 25 - Trang 3488-3500 - 2017
Thitiphan Assawincharoenkij1, Christoph Hauzenberger2, Karl Ettinger2, Chakkaphan Sutthirat1,3,4
1Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
2NAWI Graz Geocenter, Petrology and Geochemistry, University of Graz, Graz, Austria
3Research Program of Toxic Substance Management in the Mining Industry, Center of Excellence on Hazardous Substance Management, Environmental Research Institute, Chulalongkorn University, Bangkok, Thailand
4Research Unit of Site Remediation on Metals Management from Industry and Mining (Site Rem), Chulalongkorn University, Bangkok, Thailand

Tóm tắt

Đá thải từ khai thác vàng ở đông bắc Thái Lan được phân loại thành cát kết, đá bùn, gossan, skarn, skarn - sulfide, sulfide khối, diorit, và đá vôi/marmarit. Trong số các loại đá này, đá skarn-sulfide và đá sulfide khối có khả năng phát sinh nước thải axit từ mỏ (AMD) do chúng chứa một lượng đáng kể khoáng sản sulfide, tức là, pyrrhotite, pyrite, arsenopyrite, và chalcopyrite. Hơn nữa, cả hai loại đá sulfide đều chứa hàm lượng cao As và Cu, điều này được gây ra bởi sự xuất hiện của arsenopyrite và chalcopyrite, tương ứng. Một vấn đề chính khác là hàm lượng gossan, bao gồm goethite, oxit sắt kết hợp nước (HFO), thạch anh, thạch cao, và pyroxene đã oxy hóa. Các bản đồ X-quang sử dụng phân tích vi điện tử (EPMA) cho thấy sự phân bố của một số nguyên tố độc hại trong khoáng sản Fe-oxyhydroxide trong đá thải gossan. Chì (As) (lên đến 1.37 wt.%) và đồng (Cu) (lên đến 0.60 wt.%) được tìm thấy trong goethite, HFO, và ven oxy hóa của pyroxene. Do đó, đá gossan dường như là một nguồn cung cấp As, Cu, và Mn. Kết quả là đá sulfide khối, skarn-sulfide, và gossan đều có khả năng gây ra các tác động môi trường, đặc biệt là AMD và ô nhiễm nguyên tố độc hại. Do đó, các đá thải sulfide khối và skarn-sulfide nên được bảo vệ khỏi oxy và nước để tránh một môi trường oxy hóa, trong khi các đá thải gossan nên được bảo vệ khỏi sự hình thành AMD để ngăn ngừa ô nhiễm kim loại nặng.

Từ khóa

#Đá thải #khai thác vàng #đông bắc Thái Lan #nước thải axit từ mỏ #ô nhiễm môi trường

Tài liệu tham khảo

Álvarez-Valero AM, Pérez-López R, Matos J, Capitán MA, Nieto JM, Sáez R, Delgado J, Caraballo M (2008) Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian peninsula): evidence from a chemical and mineralogical characterization. Environ Geol 55(8):1797–1809. https://doi.org/10.1007/s00254-007-1131-x Ashley PM, Lottermoser BG, Collins AJ, Grant CD (2004) Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environ Geol 46(5):591–604. https://doi.org/10.1007/s00254-004-1063-7 Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171(1-3):965–972. https://doi.org/10.1016/j.jhazmat.2009.06.097 Basu A, Schreiber ME (2013) Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies. J Hazard Mater 262:896–904. https://doi.org/10.1016/j.jhazmat.2012.12.027 Carbone C, Marescotti P, Lucchetti G, Martinelli A, Basso R, Cauzid J (2012) Migration of selected elements of environmental concern from unaltered pyrite-rich mineralizations to Fe-rich alteration crusts. J Geochem Explor 114:109–117. https://doi.org/10.1016/j.gexplo.2012.01.003 Changul C, Sutthirat C, Padmanahban G, Tongcumpou C (2009) Assessing the acidic potential of waste rock in the Akara gold mine, Thailand. Environ Earth Sci 60(5):1065–1071. https://doi.org/10.1007/s12665-009-0251-x Charuseiam Y (2012) Acid mine drainage generation potential of waste rocks using weathering cell test in gold mine, Thailand. Master Thesis, Chulalongkorn University, Bangkok, Thailand Charuseiam Y, Chotpantarat S, Sutthirat C (2013) The release potential of heavy metals from waste rocks from transition zone using weathering cell test in Gold Mine, Thailand. In: the 2nd International Conference on Engineering and Applied Science (2013 ICEAS), Tokyo, Japan, 15–17 March, 2013 Chonglakmani C (1984) Geological map of Udon Thani-Wang Wiang, quadrangle, scale 1:250000. Department of Mineral Resources, Bangkok, Thailand Cidu R, Dadea C, Desogus P, Fanfani L, Manca PP, Orrù G (2012) Assessment of environmental hazards at abandoned mining sites: a case study in Sardinia, Italy. Appl Geochem 27(9):1795–1806. https://doi.org/10.1016/j.apgeochem.2012.02.014 Corkhill CL, Vaughan DJ (2009) Arsenopyrite oxidation—a review. Appl Geochem 24(12):2342–2361. https://doi.org/10.1016/j.apgeochem.2009.09.008 Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/3527602097 Craw D, Falconer D, Youngson JH (2003) Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem Geol 199(1-2):71–82. https://doi.org/10.1016/S0009-2541(03)00117-7 Crow MJ, Zaw K (2011) Metallifeous minerals. In: Ridd MF, Barber AJ, Crow MJ (eds) The geology of Thailand. The geological society, London, pp 459–492 Da Pelo S, Musu E, Cidu R, Frau F, Lattanzi P (2009) Release of toxic elements from rocks and mine wastes at the Furtei gold mine (Sardinia, Italy). J Geochem Explor 100(2-3):142–152. https://doi.org/10.1016/j.gexplo.2008.06.006 EPA (2004) Laboratory sample preparation. https://www.epa.gov/sites/production/files/2015-05/documents/402-b-04-001b-12-final.pdf Accessed on April 18, 2014 ERIC (2012) The final report: survey of distribution and sources of heavy metals contamination in Phu Thap Fah Gold Mine Deposit, Khao Luang, Wang Sapung, Loei Province. Environmental Research Institute, Chulalongkorn University, Bangkok (in Thai) Gerth J (1990) Unit-cell dimensions of pure and trace metal-associated goethites. Geochim Cosmochim Acta 54(2):363–371. https://doi.org/10.1016/0016-7037(90)90325-F Huagul W (2007) The surveillance quality in Hoi Rivers. Master Thesis, Loei Rajabhat University, Loei, Thailand (in Thai) Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7(6):375–380. https://doi.org/10.2113/gselements.7.6.375 Hunt J, Lottermoser BG, Parbhakar-Fox A, Van Veen E, Goemann K (2016) Precious metals in gossanous waste rocks from the Iberian Pyrite Belt. Miner Eng 87:45–53. https://doi.org/10.1016/j.mineng.2015.12.002 Khamthat S (2007) Determination of heavy metals in ground water in the communities surrounding the gold mine, Khao Luang Sub-district, Wang Saphung District, Loei Province. Master Thesis, Loei Rajabhat University, Loei, Thailand (in Thai) Khon Kaen University Report (2009) Final report of environmental impact assessment (EIA). Khon Kaen University, Khon Kaen Province (in Thai) Klongsamran C, Chotipong A, Sutthirat C (2014) The impact of pH on the leaching of heavy metal form waste rock at Phutabpha gold mine. In: the 52th Academic conference, Kasetsart University, Bangkok, Thailand, 4–7 Febuary, 2014. p 111 Koski RA, Munk L, Foster AL, Shanks Iii WC, Stillings LL (2008) Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA. Appl Geochem 23(2):227–254. https://doi.org/10.1016/j.apgeochem.2007.10.007 Lapakko K (2002) Metal mine rock and waste characterization tools: an overview. Metal Mining and Sustainable Development Website 67. Available at: http://pubs.iied.org/G00559/?k=G00559 Lindsay MBJ, Moncur MC, Bain JG, Jambor JL, Ptacek CJ, Blowes DW (2015) Geochemical and mineralogical aspects of sulfide mine tailings. Appl Geochem 57:157–177. https://doi.org/10.1016/j.apgeochem.2015.01.009 Lottermoser BG (2010) Mine wastes. characterization, treatment and environmental impacts, 3rd edn. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12419-8 Majzlan J, Lalinská B, Chovan M, Jurkovič L, Milovská S, Göttlicher J (2007) The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochim Cosmochim Acta 71(17):4206–4220. https://doi.org/10.1016/j.gca.2007.06.053 Marescotti P, Azzali E, Servida D, Carbone C, Grieco G, De Capitani L, Lucchetti G (2009) Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environ Earth Sci 61(1):187–199. https://doi.org/10.1007/s12665-009-0335-7 Ministry of Industry Thailand (2006) Notification of ministry of industry, subject: waste disposal. http://www2.diw.go.th/PIC/download/waste/waste11.pdf. Accessed on December 20, 2015 Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1-2):1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006 Murciego A, Álvarez-Ayuso E, Pellitero E, Rodríguez MA, García-Sánchez A, Tamayo A, Rubio J, Rubio F, Rubin J (2011) Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. J Hazard Mater 186(1):590–601. https://doi.org/10.1016/j.jhazmat.2010.11.033 Noack Y, Colin F, Nahon D, Delvigne J, Michaux L (1993) Secondary-mineral formationduring natural weathering of pyroxene: review and thermodynamic approach. Am J Sci 293(2):111–134. https://doi.org/10.2475/ajs.293.2.111 Nonthee R (2010) Water quality analysis in the communities surrounding the Gold mine, Khao Luang Sub-district, Wang Saphung District, Loei Province. Master Thesis, Loei Rajabhat University, Loei, Thailand (in Thai) Nugraha C, Shimada H, Sasaoka T, Ichinose M, Matsui K, Manege I (2009) Geochemistry of waste rock at dumping area. Int J Min Reclamat Environ 23(2):132–143. https://doi.org/10.1080/17480930802439845 Paktunc D (2013) Mobilization of arsenic from mine tailings through reductive dissolution of goethite influenced by organic cover. Appl Geochem 36:49–56. https://doi.org/10.1016/j.apgeochem.2013.05.012 Parbhakar-Fox A, Lottermoser B, Bradshaw D (2013) Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction. Miner Eng 52:111–124. https://doi.org/10.1016/j.mineng.2013.04.022 Parbhakar-Fox A, Lottermoser BG (2015) A critical review of acid rock drainage prediction methods and practices. Miner Eng 82:107–124. https://doi.org/10.1016/j.mineng.2015.03.015 Parbhakar-Fox AK, Edraki M, Hardie K, Kadletz O, Hall T (2014) Identification of acid rock drainage sources through mesotextural classification at abandoned mines of Croydon, Australia: implications for the rehabilitation of waste rock repositories. J Geochem Explor 137:11–28. https://doi.org/10.1016/j.gexplo.2013.10.017 Parbhakar-Fox AK, Edraki M, Walters S, Bradshaw D (2011) Development of a textural index for the prediction of acid rock drainage. Miner Eng 24(12):1277–1287. https://doi.org/10.1016/j.mineng.2011.04.019 Peacock CL, Sherman DM (2004) Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 68(12):2623–2637. https://doi.org/10.1016/j.gca.2003.11.030 Rancourt DG, Fortin D, Pichler T, Thibault P-J, Lamarche G, Morris RV, Mercier PHJ (2001) Mineralogy of a natural As-rich hydrous ferric oxide coprecipitate formed by mixing of hydrothermal fluid and seawater: implications regarding surface complexation and color banding in ferrihydrite deposits. Am Mineral 86(7-8):834–851. https://doi.org/10.2138/am-2001-0707 Rodmanee T (2000) Genetic model of Phu Thap Fha gold deposit, Ban Huai Phuk Amphoe Wang Saphung, Changwat Loei. Master Thesis, Chiang Mai University, Chiang Mai, Thailand Romero A, González I, Galán E (2006) Estimation of potential pollution of waste mining dumps at Peña del Hierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Appl Geochem 21(7):1093–1108. https://doi.org/10.1016/j.apgeochem.2006.03.002 Rosler HJ, Lange H (1972) Geochemical table. Elsevier, Amsterdam Satoh H, Ishiyama D, Mizuta T, Ishikawa Y (1999) Rare earth element analysis of rock and thermal water samples by inductively coupled plasma mass spectrometry (ICP-MS) vol 20. Akita University, Akita Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Eng 2(3):1785–1803. https://doi.org/10.1016/j.jece.2014.07.021 Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43(3):246–253. https://doi.org/10.4103/0253-7613.81505 Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568. https://doi.org/10.1016/S0883-2927(02)00018-5 Smith LJD, Bailey BL, Blowes DW, Jambor JL, Smith L, Sego DC (2013) The Diavik waste rock project: initial geochemical response from a low sulfide waste rock pile. Appl Geochem 36:210–221. https://doi.org/10.1016/j.apgeochem.2012.06.008 Smuda J, Dold B, Friese K, Morgenstern P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulfide-rich excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92(2-3):97–110. https://doi.org/10.1016/j.gexplo.2006.08.001 Sracek O, Choquette M, Gélinas P, Lefebvre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. J Contam Hydrol 69(1-2):45–71. https://doi.org/10.1016/S0169-7722(03)00150-5 Sracek O, Gélinas P, Lefebvre R, Nicholson RV (2006) Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada. J Geochem Explor 91(1-3):99–109. https://doi.org/10.1016/j.gexplo.2006.03.002 Sutthirat C (2011) Geochemical application for environmental monitoring and metal mining management. In: Ekundayo EO (ed) Environmental monitoring. InTech, Croatia, pp 91–108. https://doi.org/10.5772/27207 Sutthirat C, Changul C (2012) Geochemical characteristics of waste rocks from the Akara Gold Mine, Phichit Province, Thailand. Arab J Sci Eng 38(1):135–147. https://doi.org/10.1007/s13369-012-0400-5 Thai Meteorological Department (2012) Areage temperature and rainfall amount 30 years of Loei Province. http://www.tmd.go.th/province_weather_stat.php?StationNumber=48353. Accessed on March 3, 2016 Tuisakda N (2008) Analysis of cyanide in rain water and heavy metals in groundwater in the communities surrounding the Gold mine, Khao Luang Subdistrict, Wang Saphung District, Loei Province. Master Thesis, Loei Rajabhat University, Loei, Thailand (in Thai) Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Bull Geol Soc Am 72(2):175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 Valente T, Grande JA, de la Torre ML, Santisteban M, Cerón JC (2013) Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Appl Geochem 39:11–25. https://doi.org/10.1016/j.apgeochem.2013.09.014 Velasco F, Herrero JM, Suárez S, Yusta I, Alvaro A, Tornos F (2013) Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geol Rev 53:181–203. https://doi.org/10.1016/j.oregeorev.2013.01.008 Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A Physicochem Eng Asp 107:97–110. https://doi.org/10.1016/0927-7757(95)03368-8 Williams DJ, Wilson GW, Currey NA (1997) A cover system for a potentially acid forming waste rock dump in a dry climate. In: the 4th International Conference on Tailings and mine waste ‘97, Rotterdam, Fort Collins, Colorado, 13–17 January 1997. Balkema, pp 231–236 Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179. https://doi.org/10.1016/j.sajb.2009.10.007