Mineral weathering by bacteria: ecology, actors and mechanisms

Trends in Microbiology - Tập 17 Số 8 - Trang 378-387 - 2009
Stéphane Uroz1, Christophe Calvaruso2, Marie‐Pierre Turpault3, Pascale Frey‐Klett1
1Interactions Arbres-Microorganismes
2Université du Luxembourg
3Unité de recherche Biogéochimie des Ecosystèmes Forestiers

Tóm tắt

Từ khóa


Tài liệu tham khảo

Douglas, 1998, Mineral formation by bacteria in natural microbial communities, FEMS Microbiol. Ecol., 26, 79, 10.1111/j.1574-6941.1998.tb00494.x

Burford, 2003, Fungal involvement in bioweathering and biotransformation of rocks and minerals, Mineral. Mag., 67, 1127, 10.1180/0026461036760154

Dupraz, 2005, Microbial lithification in marine stromatolites and hypersaline mats, Trends Microbiol., 13, 429, 10.1016/j.tim.2005.07.008

Rawlings, 2003, Biomineralization of metal-containing ores and concentrates, Trends Biotechnol., 21, 38, 10.1016/S0167-7799(02)00004-5

Sand, 2005, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria, Res. Microbiol., 157, 49, 10.1016/j.resmic.2005.07.012

Daghino, 2006, Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers, Environ. Sci. Technol., 40, 5793, 10.1021/es060881v

Calvaruso, 2006, Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis, Appl. Environ. Microbiol., 72, 1258, 10.1128/AEM.72.2.1258-1266.2006

Goldstein, 1999, Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium, FEMS Microbiol. Ecol., 30, 295, 10.1111/j.1574-6941.1999.tb00657.x

Toro, 1997, Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32)P) and nutrient cycling, Appl. Environ. Microbiol., 63, 4408, 10.1128/AEM.63.11.4408-4412.1997

Robert, M. and Berthelin, J. (1986) Role of biological and biochemical factors in soil mineral weathering. In Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, 17, pp. 453-495, Madison

Barker, W.W. et al. (1997) Biogeochemical weathering of silicate minerals. In Geomicrobiology: Interactions between Microbes and Minerals, pp. 391-428, Mineralogical Soc America

Marsh, 2003, Are dental diseases examples of ecological catastrophes?, Microbiology, 149, 279, 10.1099/mic.0.26082-0

ten Cate, 2006, Biofilms, a new approach to the microbiology of dental plaque, Odontology, 94, 1, 10.1007/s10266-006-0063-3

Banfield, 1999, Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere, Proc. Natl. Acad. Sci. U. S. A., 96, 3404, 10.1073/pnas.96.7.3404

Gorbushina, 2007, Life on the rocks, Environ. Microbiol., 9, 1613, 10.1111/j.1462-2920.2007.01301.x

Natesan, 1989, Extractcellular phosphate solubilization by the cyanobacterium Anabaena ARM310, J. Biosci., 14, 203, 10.1007/BF02716680

Männisto, 2006, Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland, Syst. Appl. Microbiol., 29, 229, 10.1016/j.syapm.2005.09.001

Seneviratne, 2006, Nitrogen fixation in lichens is important for improved rock weathering, J. Biosci., 31, 639, 10.1007/BF02708416

Calvaruso, 2007, Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes, Microb. Ecol., 54, 567, 10.1007/s00248-007-9260-z

Uroz, 2007, Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil, Appl. Environ. Microbiol., 73, 3019, 10.1128/AEM.00121-07

Bennett, 2001, Silicates, silicate weathering, and microbial ecology, Geomicrobiol. J., 18, 3, 10.1080/01490450151079734

Bennett, 1996, Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater, Chem. Geol., 132, 45, 10.1016/S0009-2541(96)00040-X

Certini, 2004, Rock fragments in soil support a different microbial community from the fine earth, Soil Biol. Biochem., 36, 1119, 10.1016/j.soilbio.2004.02.022

McNamara, 2006, Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site, Microb. Ecol., 51, 51, 10.1007/s00248-005-0200-5

Gleeson, 2005, Characterization of fungal community structure on a weathered pegmatitic granite, Microb. Ecol., 50, 360, 10.1007/s00248-005-0198-8

Gleeson, 2006, Characterization of bacterial community structure on a weathered pegmatitic granite, Microb. Ecol., 51, 526, 10.1007/s00248-006-9052-x

Carson, 2007, Altering the mineral composition of soil causes a shift in microbial community structure, FEMS Microbiol. Ecol., 61, 414, 10.1111/j.1574-6941.2007.00361.x

Calvaruso, C. et al. Rapid clay weathering in the rhizosphere of Norway spruce and oak in an acid forest ecosystem. Soil Sci. Soc. Am. J. 73, 331-338

Jones, 2003, Organic acid behavior in soils – misconceptions and knowledge gaps, Plant Soil, 248, 31, 10.1023/A:1022304332313

Wallander, 2000, Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi, Plant Soil, 218, 249, 10.1023/A:1014936217105

Vázquez, 2000, Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon, Biol. Fertil. Soils, 30, 460, 10.1007/s003740050024

Puente, 2004, Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks, Plant Biol. (Stuttg), 6, 629, 10.1055/s-2004-821100

Leyval, 1991, Weathering of a mica by roots and rhizospheric micro-organisms of pine, Soil Sci. Soc. Am. J., 55, 1009, 10.2136/sssaj1991.03615995005500040020x

Illmer, 1995, Solubilization of inorganic calcium phosphates: solubilization mechanisms, Soil Biol. Biochem., 27, 257, 10.1016/0038-0717(94)00190-C

Frey-Klett, 2005, Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads, New Phytol., 165, 317, 10.1111/j.1469-8137.2004.01212.x

Dancis, 1990, Genetic evidence that Ferric reductase is required for iron uptake in Saccharomyces cerevisiae, Mol. Cell. Biol., 10, 2294, 10.1128/MCB.10.5.2294

Landeweert, 2001, Linking plants to rock: ectomycorrhizal fungi mobilize nutrients from minerals, Trends Ecol. Evol., 16, 248, 10.1016/S0169-5347(01)02122-X

Blum, 2002, Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems, Nature, 417, 729, 10.1038/nature00793

Glowa, 2003, Extraction of potassium and/or magnesium from selected soil minerals by Piloderma, Geomicrobiol. J., 20, 99, 10.1080/01490450303881

Jongmans, 1997, Rock-eating fungi, Nature, 389, 682, 10.1038/39493

Smits, 2005, Contribution of mineral tunneling to total feldspar weathering, Geoderma, 125, 59, 10.1016/j.geoderma.2004.06.005

Izumi, 2006, Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris), FEMS Microbiol. Ecol., 56, 34, 10.1111/j.1574-6941.2005.00048.x

Augusto, 1998, Impact of tree species on forest soil acidification, Forest Eco. land Management, 1005, 67, 10.1016/S0378-1127(97)00270-3

Leyval, 1989, Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth, Plant Soil, 117, 103, 10.1007/BF02206262

Newman, 2001, How bacteria respire minerals, Science, 292, 1312, 10.1126/science.1060572

Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol., 70, 921, 10.1128/AEM.70.2.921-928.2004

Croal, 2004, The genetics of geochemistry, Annu. Rev. Genet., 38, 175, 10.1146/annurev.genet.38.072902.091138

Welch, 1993, The effect of organic acids on plagioclase dissolution rates and stoichiometry, Geochim. Cosmochim. Acta, 57, 2725, 10.1016/0016-7037(93)90386-B

Sverdrup, H. and Warfvinge, P. (1995) Estimating field weathering rates using laboratory kinetics. Reviews in Mineralogy and Geochemistry. In Chemical Weathering Rates of Silicates Minerals, (White, A.F. and Brantly, S.L., eds), 31, 485-541

Welch, 2002, Effect of microorganisms and microbial metabolites on apatite dissolution, Geomicrobiol. J., 19, 343, 10.1080/01490450290098414

Page, 1984, Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion, J. Bacteriol., 158, 496, 10.1128/JB.158.2.496-502.1984

Liermann, 2000, Role of bacterial siderophores in dissolution of hornblende, Geochim. Cosmochim. Acta, 64, 587, 10.1016/S0016-7037(99)00288-4

Kalinowski, 2000, X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende, Geochim. Cosmochim. Acta, 64, 1331, 10.1016/S0016-7037(99)00371-3

Kim, 2005, Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms, J. Biosci. Bioeng., 99, 23, 10.1263/jbb.99.23

Nautiyal, 2000, Stress induced phosphate solubilization in bacteria isolated from alkaline soils, FEMS Microbiol. Lett., 182, 291, 10.1111/j.1574-6968.2000.tb08910.x

Hameeda, 2006, Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna, Curr. Microbiol., 53, 298, 10.1007/s00284-006-0004-y

Wu, 2008, Characterization of elemental release during microbe-granite interactions at T = 28°C, Geochim. Cosmochim. Acta, 72, 1076, 10.1016/j.gca.2007.11.025

Valdes, 2008, Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications, BMC Genomics, 9, 597, 10.1186/1471-2164-9-597

Heidelberg, 2004, Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis, Nat. Biotechnol., 20, 1118, 10.1038/nbt749

Methé, 2003, Genome of Geobacter sulfurreducens: metal reduction in subsurface environments, Science, 302, 1967, 10.1126/science.1088727

Yarzábal, 2002, Cytochromes c of Acidithiobacillus ferrooxidans, FEMS Microbiol. Lett., 209, 189, 10.1016/S0378-1097(02)00514-1

Beller, 2006, Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions, J. Bacteriol., 188, 7005, 10.1128/JB.00568-06

Tyson, 2004, Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, 428, 37, 10.1038/nature02340

Babu-Khan, 1995, Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia, Appl. Environ. Microbiol., 61, 972, 10.1128/AEM.61.3.972-978.1995

Kim, 1998, Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli, FEMS Microbiol. Lett., 159, 121, 10.1111/j.1574-6968.1998.tb12850.x

Rodriguez, 2004, Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp, Naturwissenschaften, 91, 552, 10.1007/s00114-004-0566-0

Han, S.H. et al., Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol. Lett. 282, 140-146

Vassilev, 2006, Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends, Appl. Microbiol. Biotechnol., 71, 137, 10.1007/s00253-006-0380-z

Page, 1987, Iron-dependant production of hydroxamate by sodium-dependent Azotobacter chroococcum, Appl. Environ. Microbiol., 53, 1418, 10.1128/AEM.53.7.1418-1424.1987

Childers, 2002, Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis, Nature, 416, 767, 10.1038/416767a

Mustin, 1992, Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 58, 1175, 10.1128/AEM.58.4.1175-1182.1992

Krishnaraj, 2001, Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens, FEMS Microbial. Lett., 205, 215, 10.1111/j.1574-6968.2001.tb10950.x

Kostka, 1996, Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1, Clays Clay Miner., 44, 522, 10.1346/CCMN.1996.0440411

Davis, 2007, Calcite and dolomite dissolution rates in the context of microbe–mineral surface interactions, Geobiology, 5, 191, 10.1111/j.1472-4669.2007.00112.x

Dong, 2003, Microscopic evidence for microbial dissolution of smectite, Clays Clay Miner., 51, 502, 10.1346/CCMN.2003.0510504

Kim, 2004, Role of microbes in the smectite-to-illite reaction, Science, 303, 830, 10.1126/science.1093245

Song, 2007, Effect of Bacillus subtilis on granite weathering: a laboratory experiment, Catena, 70, 275, 10.1016/j.catena.2006.09.003

Modak, 1999, Calcium removal from bauxite using Paenibacillus polymyxa, Minerals Metall. Processing, 16, 6

Uroz, 2006, Altération microbienne des minéraux, Biofutur, 268, 37